Spelling suggestions: "subject:"marmosets"" "subject:"thermosets""
11 |
Universal Cycles for Some Combinatorial ObjectsCampbell, Andre A 01 May 2013 (has links) (PDF)
A de Bruijn cycle commonly referred to as a universal cycle (u-cycle), is a complete and compact listing of a collection of combinatorial objects. In this paper, we show the power of de Bruijn's original theorem, namely that the cycles bearing his name exist for n-letter words on a k-letter alphabet for all values of k,n, to prove that we can create de Bruijn cycles for multi-sets using natural encodings and M-Lipschitz n-letter words and the assignment of elements of [n]={1,2,...,n} to the sets in any labeled subposet of the Boolean lattice; de Bruijn's theorem corresponds to the case when the subposet in question consists of a single ground element. In this paper, we also show that de Bruijn's cycles exist for words with weight between s and t, where these parameters are suitably restricted.
|
12 |
Sur l'algèbre et la combinatoire des sous-graphes d'un graphe / On algebraic and combinatorial aspects of the subgraphs of a graphBuchwalder, Xavier 30 November 2009 (has links)
On introduit une nouvelle structure algébrique qui formalise bien les problèmes de reconstruction, assortie d’une conjecture qui permettrait de traiter directement des symétries. Le cadre fournit par cette étude permet de plus d’engendrer des relations qui ont lieu entre les nombres de sous-structures, et d’une certaine façon, la conjecture formulée affirme qu’on les obtient toutes. De plus, la généralisation des résultats précédemment obtenus pour la reconstruction permet de chercher `a en apprécier les limites en recherchant des cas où ces relations sont optimales. Ainsi, on montre que les théorèmes de V.Müller et de L.Lovasz sont les meilleurs possibles en exhibant des cas limites. Cette généralisation aux algèbres d’invariants, déjà effectuée par P.J.Cameron et V.B.Mnukhin, permet de placer les problèmes de reconstruction en tenaille entre d’une part des relations (fournies) que l’on veut exploiter, et des exemples qui établissent l’optimalité du résultat. Ainsi, sans aucune donnée sur le groupe, le résultat de L.Lovasz est le meilleur possible, et si l’on considère l’ordre du groupe, le résultat de V.Müller est le meilleur possible. / A new algebraic structure is described, that is a useful framework in whichreconstruction problems and results can be expressed. A conjecture is madewhich would, provided it is true, help to address the problem of symmetries.A consequence of the abstract language in which the theory is formulated isthe expression of relations between the numbers of substructures of a structure(for example, the number of subgraphs of a given type in a graph).Moreover, a generalisation similar to the one achieved by P.J.Cameron andV.B.Mnukhin of the results of edge reconstruction to invariant algebras isstated. Examples are then provided to show that the result of L.Lovasz isbest possible if one knows nothing about the underlying group, and that theresult of V.Müller is best possible if one knows only the order of the group.Thus, reconstruction problems are set in a theory that generates relationsto address them, and at the same time, provides examples establishing thesharpness of the theorems.
|
13 |
Weighted Branching Automata / Combining Concurrency and Weights / Gewichtete verzweigende AutomatenMeinecke, Ingmar 05 November 2005 (has links) (PDF)
Eine der stärksten Erweiterungen der klassischen Theorie formaler Sprachen und Automaten ist die Einbeziehung von Gewichten oder Vielfachheiten aus einem Halbring. Diese Dissertation untersucht gewichtete Automaten über Strukturen mit Nebenläufigkeit. Wir erweitern die Arbeit von Lodaya und Weil und erhalten so ein Modell gewichteter verzweigender Automaten, in dem die Berechnung des Gewichts einer parallelen Komposition anders als die einer sequentiellen Komposition gehandhabt wird. Die von Lodaya und Weil eingeführten Automaten modellieren Nebenläufigkeit durch Verzweigen. Ein verzweigender Automat ist ein endlicher Automat mit drei verschiedenen Typen von Transitionen. Sequentielle Transitionen überführen durch Ausführen eines Ereignisses einen Zustand in einen anderen. Dagegen sind Gabel- und Binde-Transitionen für das Verzweigen verantwortlich. Läufe dieser Automaten werden beschrieben durch sequentiell-parallele posets, kurz sp-posets. Alle Transitionen des Automaten werden in unserem Modell mit Gewichten versehen. Neben dem Nichtdeterminismus und der sequentiellen Komposition wollen wir nun auch die parallele Komposition quantitativ behandeln. Dafür benötigen wir eine Gewichtsstruktur mit einer Addition, einer sequentiellen und einer parallelen Multiplikation. Solch eine Struktur, genannt Bihalbring, besteht damit de facto aus zwei Halbringen mit derselben additiven Struktur. Weiterhin muss die parallele Multiplikation kommutativ sein. Das Verhalten eines gewichteten verzweigenden Automaten ist dann eine Funktion, die jeder sp-poset ein Element eines Bihalbrings zuordnet. Das Hauptresultat charakterisiert das Verhalten dieser Automaten im Sinne von Kleenes und Schützenbergers Sätzen über das Zusammenfallen der Klassen der erkennbaren und der rationalen Sprachen bzw. formalen Potenzreihen. Darüber hinaus untersuchen wir den Abschluss dieser Verhalten unter allen rationalen Operationen und unter dem Hadamard-Produkt. Letztlich diskutieren wir Zusammenhänge zwischen Reihen und Sprachen im Rahmen verzweigender Automaten. / One of the most powerful extensions of classical formal language and automata theory is the consideration of weights or multiplicities from a semiring. This thesis investigates weighted automata over structures incorporating concurrency. Extending work by Lodaya and Weil, we propose a model of weighted branching automata in which the calculation of the weight of a parallel composition is handled differently from the calculation of the weight of a sequential composition. The automata as proposed by Lodaya and Weil model concurrency by branching. A branching automaton is a finite-state device with three different types of transitions. Sequential transitions transform a state into another one by executing an action. In contrast, fork and join transitions are responsible for branching. Executions of such systems can be described by sequential-parallel posets, or sp-posets for short. In the model considered here all kinds of transitions are equipped with weights. Beside non-determinism and sequential composition we would like to deal with the parallel composition in a quantitative way. Therefore, we are in need of a weight structure equipped with addition, a sequential, and, moreover, a parallel multiplication. Such a structure, called a bisemiring, is actually composed of two semirings with the same additive structure. Moreover, the parallel multiplication has to be commutative. Now, the behavior of a weighted branching automaton is a function that associates with every sp-poset an element from the bisemiring. The main result characterizes the behavior of these automata in the spirit of Kleene's and Schützenberger's theorems about the coincidence of recognizable and rational languages, and formal power series, respectively. Moreover, we investigate the closure of behaviors under all rational operations and under Hadamard-product. Finally, we discuss connections between series and languages within our setting.
|
14 |
Weighted Branching Automata: Combining Concurrency and WeightsMeinecke, Ingmar 14 December 2004 (has links)
Eine der stärksten Erweiterungen der klassischen Theorie formaler Sprachen und Automaten ist die Einbeziehung von Gewichten oder Vielfachheiten aus einem Halbring. Diese Dissertation untersucht gewichtete Automaten über Strukturen mit Nebenläufigkeit. Wir erweitern die Arbeit von Lodaya und Weil und erhalten so ein Modell gewichteter verzweigender Automaten, in dem die Berechnung des Gewichts einer parallelen Komposition anders als die einer sequentiellen Komposition gehandhabt wird. Die von Lodaya und Weil eingeführten Automaten modellieren Nebenläufigkeit durch Verzweigen. Ein verzweigender Automat ist ein endlicher Automat mit drei verschiedenen Typen von Transitionen. Sequentielle Transitionen überführen durch Ausführen eines Ereignisses einen Zustand in einen anderen. Dagegen sind Gabel- und Binde-Transitionen für das Verzweigen verantwortlich. Läufe dieser Automaten werden beschrieben durch sequentiell-parallele posets, kurz sp-posets. Alle Transitionen des Automaten werden in unserem Modell mit Gewichten versehen. Neben dem Nichtdeterminismus und der sequentiellen Komposition wollen wir nun auch die parallele Komposition quantitativ behandeln. Dafür benötigen wir eine Gewichtsstruktur mit einer Addition, einer sequentiellen und einer parallelen Multiplikation. Solch eine Struktur, genannt Bihalbring, besteht damit de facto aus zwei Halbringen mit derselben additiven Struktur. Weiterhin muss die parallele Multiplikation kommutativ sein. Das Verhalten eines gewichteten verzweigenden Automaten ist dann eine Funktion, die jeder sp-poset ein Element eines Bihalbrings zuordnet. Das Hauptresultat charakterisiert das Verhalten dieser Automaten im Sinne von Kleenes und Schützenbergers Sätzen über das Zusammenfallen der Klassen der erkennbaren und der rationalen Sprachen bzw. formalen Potenzreihen. Darüber hinaus untersuchen wir den Abschluss dieser Verhalten unter allen rationalen Operationen und unter dem Hadamard-Produkt. Letztlich diskutieren wir Zusammenhänge zwischen Reihen und Sprachen im Rahmen verzweigender Automaten. / One of the most powerful extensions of classical formal language and automata theory is the consideration of weights or multiplicities from a semiring. This thesis investigates weighted automata over structures incorporating concurrency. Extending work by Lodaya and Weil, we propose a model of weighted branching automata in which the calculation of the weight of a parallel composition is handled differently from the calculation of the weight of a sequential composition. The automata as proposed by Lodaya and Weil model concurrency by branching. A branching automaton is a finite-state device with three different types of transitions. Sequential transitions transform a state into another one by executing an action. In contrast, fork and join transitions are responsible for branching. Executions of such systems can be described by sequential-parallel posets, or sp-posets for short. In the model considered here all kinds of transitions are equipped with weights. Beside non-determinism and sequential composition we would like to deal with the parallel composition in a quantitative way. Therefore, we are in need of a weight structure equipped with addition, a sequential, and, moreover, a parallel multiplication. Such a structure, called a bisemiring, is actually composed of two semirings with the same additive structure. Moreover, the parallel multiplication has to be commutative. Now, the behavior of a weighted branching automaton is a function that associates with every sp-poset an element from the bisemiring. The main result characterizes the behavior of these automata in the spirit of Kleene's and Schützenberger's theorems about the coincidence of recognizable and rational languages, and formal power series, respectively. Moreover, we investigate the closure of behaviors under all rational operations and under Hadamard-product. Finally, we discuss connections between series and languages within our setting.
|
15 |
Intersection problems in combinatoricsBrunk, Fiona January 2009 (has links)
With the publication of the famous Erdős-Ko-Rado Theorem in 1961, intersection problems became a popular area of combinatorics. A family of combinatorial objects is t-intersecting if any two of its elements mutually t-intersect, where the latter concept needs to be specified separately in each instance. This thesis is split into two parts; the first is concerned with intersecting injections while the second investigates intersecting posets. We classify maximum 1-intersecting families of injections from {1, ..., k} to {1, ..., n}, a generalisation of the corresponding result on permutations from the early 2000s. Moreover, we obtain classifications in the general t>1 case for different parameter limits: if n is large in terms of k and t, then the so-called fix-families, consisting of all injections which map some fixed set of t points to the same image points, are the only t-intersecting injection families of maximal size. By way of contrast, fixing the differences k-t and n-k while increasing k leads to optimal families which are equivalent to one of the so-called saturation families, consisting of all injections fixing at least r+t of the first 2r+t points, where r=|_ (k-t)/2 _|. Furthermore we demonstrate that, among injection families with t-intersecting and left-compressed fixed point sets, for some value of r the saturation family has maximal size . The concept that two posets intersect if they share a comparison is new. We begin by classifying maximum intersecting families in several isomorphism classes of posets which are linear, or almost linear. Then we study the union of the almost linear classes, and derive a bound for an intersecting family by adapting Katona's elegant cycle method to posets. The thesis ends with an investigation of the intersection structure of poset classes whose elements are close to the antichain. The overarching theme of this thesis is fixing versus saturation: we compare the sizes and structures of intersecting families obtained from these two distinct principles in the context of various classes of combinatorial objects.
|
16 |
On Dimensional Parameters Of Graphs And PosetsAdiga, Abhijin 02 1900 (has links) (PDF)
In this thesis we study the following dimensional parameters : boxicity, cubicity, threshold dimension and poset dimension. While the first three parameters are defined on graphs, poset dimension is defined on partially ordered sets (or posets). We only consider finite graphs and posets. In addition, we assume that the graphs are simple and undirected.
Boxicity and Cubicity: A k-box (k-cube) is a Cartesian product of closed intervals(unit-intervals) [a1,b1]x…x [ak,bk]. The boxicity (cubicity) of a graph G,box (G) (cub(G)) is the minimum integer k such that every vertex in G is mapped to a k-box(k-cube) in the k-dimensional Euclidean space and two boxes(cubes) intersect if and only if their corresponding vertices are adjacent in G. Boxicity and cubicity can be considered as extensions of the concept of interval graphs and unit-interval graphs respectively.
Threshold Dimension: A graph G is a threshold graph if there is a real number p and a weight function w: V→ R such that for any two vertices u,,v ε V(G),{ u, v }is an edge if and only if w(u)+w(v) ≥ p. The threshold dimension of a graph G is the minimum integer k such that there exist k threshold graphs Gi, i =1,2,...,k which satisfy E(G)= E(G1)U E(G2)U….UE(Gk).
Poset Dimension: Let P = (S, P)be a poset where S is a finite non-empty set and P is a reflexive, anti-symmetric and transitive binary relation on S. P is a total order if every pair of elements in S is comparable in P. The dimension of P , denoted by dim(P )is the minimum integer k such that there exist k total orders on S, L1,...,Lk and for two distinct elements x,y ε S: x < y in P if and only if x < y in each Li,i ε ,{1. 2,...,k }
All the four dimensional parameters that we have considered are very hard to compute. It is NP-complete to even determine if the boxicity of a graph is at most 2, if its cubicity is at most 3, if its threshold dimension is at most 3 and if the dimension of a poset is at most 3. Also it is hard to design an approximation algorithm within √n factor for computing the dimension of a poset.
OurResults We state some of our main results:
1. Lower bounds for boxicity: We have developed two general methods based on certain vertex isoperimetric properties of graphs for deriving lower bounds. Application of these methods has led to some significant results. We mention a few of them here: ( a) Almost all graphs have boxicity Ω(n). (b) For a fixed k, boxicity of random k-regular graphs is Ω(k/log k).
2. Consider a poset P = (S,P) and let GP be its underlying comparability graph. We show that for any poset P, box(GP)/(χ(GP) - 1) ≤ dim(P) ≤ 2box (GP), where χ(GP) is the chromatic number of GP and χ(GP) = 1. Some important consequences of this result are: (a) It allows us to derive hitherto unknown upper bounds for poset dimension such as dim(P) ≤ 2tree-width (GP) + 4. (b) The boxicity of any graph with maximum degree Δ is O (Δlog2 Δ) which is an improvement over the best known upper bound of Δ2 +2. (c) There exist graphs with boxicity Ω(ΔlogΔ). This disproves a conjecture that the boxicity of a graph is O(Δ). (d)There exists no polynomial-time algorithm to approximate the boxicity of a bipartite graph on n vertices within a factor of O(n0.5−ε)for any ε > 0, unless NP = ZPP.
3.We show that every poset can be associated with a split graph such that the threshold dimension of the complement of the split graph is equal to the dimension of the poset. As a consequence we show that there exists no polynomial-time algorithm to approximate the threshold dimension of a split graph on n vertices with a factor of O(n0.5−ε)for any ε > 0, unless NP= ZPP.
4.We have given an upper bound for the cubicity of interval graphs. Claw number of a graph G, ψ(G) is the largest positive integer m such that K1,m is an induced subgraph of G. If G is an interval graph, we show that [log2 ψ(G)] ≤ cub(G) ≤ min([log2 α ], [log2 ψ(G)] +2), where α is the independence number of G.
5.We have improved upper bounds for the dimension of incidence posets and interval orders which are among the well-studied classes of posets.
|
17 |
Pattern posets: enumerative, algebraic and algorithmic issuesCervetti, Matteo 22 March 2021 (has links)
The study of patterns in combinatorial structures has grown up in the past few decades to one of the most active trends of research in combinatorics. Historically, the study of permutations which are constrained by not containing subsequences ordered in various prescribed ways has been motivated by the problem of sorting permutations with certain devices. However, the richness of this notion
became especially evident from its plentiful appearances in several very different disciplines, such as pure mathematics, mathematical physics, computer science,biology, and many others. In the last decades, similar notions of patterns have been considered on discrete structures other than permutations, such as integer sequences, lattice paths, graphs, matchings and set partitions. In the first part of
this talk I will introduce the general framework of pattern posets and some classical problems about patterns. In the second part of this talk I will present some enumerative results obtained in my PhD thesis about patterns in permutations, lattice paths and matchings. In particular I will describe a generating tree with a single label for permutations avoiding the vincular pattern 1 - 32 - 4, a finite automata approach to enumerate lattice excursions avoiding a single pattern and some results about matchings avoiding juxtapositions and liftings of patterns.
|
18 |
Finite Posets as Prime Spectra of Commutative Noetherian RingsAlkass, David January 2024 (has links)
We study partially ordered sets of prime ideals as found in commutative Noetherian rings. These structures, commonly known as prime spectra, have long been a popular topic in the field of commutative algebra. As a consequence, there are many related questions that remain unanswered. Among them is the question of what partially ordered sets appear as Spec(A) of some Noetherian ring A, asked by Kaplansky during the 1950's. As a partial case of Kaplansky's question, we consider finite posets that are ring spectra of commutative Noetherian rings. Specifically, we show that finite spectra of such rings are always order-isomorphic to a bipartite graph. However, the most significant undertaking of this study is that of devising a constructive methodology for finding a ring with prime spectrum that is order-isomorphic to an arbitrary bipartite graph. As a result, we prove that any complete bipartite graph is order-isomorphic to the prime spectrum of some ring of essentially finite type over the field of rational numbers. Moreover, a series of potential generalizations and extensions are proposed to further enhance the constructive methodology. Ultimately, the results of this study constitute an original contribution and perspective on questions related to commutative ring spectra.
|
19 |
Extremal combinatorics, graph limits and computational complexityNoel, Jonathan A. January 2016 (has links)
This thesis is primarily focused on problems in extremal combinatorics, although we will also consider some questions of analytic and algorithmic nature. The d-dimensional hypercube is the graph with vertex set {0,1}<sup>d</sup> where two vertices are adjacent if they differ in exactly one coordinate. In Chapter 2 we obtain an upper bound on the 'saturation number' of Q<sub>m</sub> in Q<sub>d</sub>. Specifically, we show that for m ≥ 2 fixed and d large there exists a subgraph G of Q<sub>d</sub> of bounded average degree such that G does not contain a copy of Q<sub>m</sub> but, for every G' such that G ⊊ G' ⊆ Q<sub>d</sub>, the graph G' contains a copy of Q<sub>m</sub>. This result answers a question of Johnson and Pinto and is best possible up to a factor of O(m). In Chapter 3, we show that there exists ε > 0 such that for all k and for n sufficiently large there is a collection of at most 2<sup>(1-ε)k</sup> subsets of [n] which does not contain a chain of length k+1 under inclusion and is maximal subject to this property. This disproves a conjecture of Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi and Patkós. We also prove that there exists a constant c ∈ (0,1) such that the smallest such collection is of cardinality 2<sup>(1+o(1))<sup>ck</sup> </sup> for all k. In Chapter 4, we obtain an exact expression for the 'weak saturation number' of Q<sub>m</sub> in Q<sub>d</sub>. That is, we determine the minimum number of edges in a spanning subgraph G of Q<sub>d</sub> such that the edges of E(Q<sub>d</sub>)\E(G) can be added to G, one edge at a time, such that each new edge completes a copy of Q<sub>m</sub>. This answers another question of Johnson and Pinto. We also obtain a more general result for the weak saturation of 'axis aligned' copies of a multidimensional grid in a larger grid. In the r-neighbour bootstrap process, one begins with a set A<sub>0</sub> of 'infected' vertices in a graph G and, at each step, a 'healthy' vertex becomes infected if it has at least r infected neighbours. If every vertex of G is eventually infected, then we say that A<sub>0</sub> percolates. In Chapter 5, we apply ideas from weak saturation to prove that, for fixed r ≥ 2, every percolating set in Q<sub>d</sub> has cardinality at least (1+o(1))(d choose r-1)/r. This confirms a conjecture of Balogh and Bollobás and is asymptotically best possible. In addition, we determine the minimum cardinality exactly in the case r=3 (the minimum cardinality in the case r=2 was already known). In Chapter 6, we provide a framework for proving lower bounds on the number of comparable pairs in a subset S of a partially ordered set (poset) of prescribed size. We apply this framework to obtain an explicit bound of this type for the poset 𝒱(q,n) consisting of all subspaces of 𝔽<sub>q</sub><sup>n</sup>ordered by inclusion which is best possible when S is not too large. In Chapter 7, we apply the result from Chapter 6 along with the recently developed 'container method,' to obtain an upper bound on the number of antichains in 𝒱(q,n) and a bound on the size of the largest antichain in a p-random subset of 𝒱(q,n) which holds with high probability for p in a certain range. In Chapter 8, we construct a 'finitely forcible graphon' W for which there exists a sequence (ε<sub>i</sub>)<sup>∞</sup><sub>i=1</sub> tending to zero such that, for all i ≥ 1, every weak ε<sub>i</sub>-regular partition of W has at least exp(ε<sub>i</sub><sup>-2</sup>/2<sup>5log∗ε<sub>i</sub><sup>-2</sup></sup>) parts. This result shows that the structure of a finitely forcible graphon can be much more complex than was anticipated in a paper of Lovász and Szegedy. For positive integers p,q with p/q ❘≥ 2, a circular (p,q)-colouring of a graph G is a mapping V(G) → ℤ<sub>p</sub> such that any two adjacent vertices are mapped to elements of ℤ<sub>p</sub> at distance at least q from one another. The reconfiguration problem for circular colourings asks, given two (p,q)-colourings f and g of G, is it possible to transform f into g by recolouring one vertex at a time so that every intermediate mapping is a p,q-colouring? In Chapter 9, we show that this question can be answered in polynomial time for 2 ≤ p/q < 4 and is PSPACE-complete for p/q ≥ 4.
|
20 |
Shift gray codesWilliams, Aaron Michael 11 December 2009 (has links)
Combinatorial objects can be represented by strings, such as 21534 for the permutation (1 2) (3 5 4), or 110100 for the binary tree corresponding to the balanced parentheses (()()). Given a string s = s1 s2 sn, the right-shift operation shift(s, i, j) replaces the substring si si+1..sj by si+1..sj si. In other words, si is right-shifted into position j by applying the permutation (j j−1 .. i) to the indices of s. Right-shifts include prefix-shifts (i = 1) and adjacent-transpositions (j = i+1). A fixed-content language is a set of strings that contain the same multiset of symbols. Given a fixed-content language, a shift Gray code is a list of its strings where consecutive strings differ by a shift. This thesis asks if shift Gray codes exist for a variety of combinatorial objects. This abstract question leads to a number of practical answers.
The first prefix-shift Gray code for multiset permutations is discovered, and it provides the first algorithm for generating multiset permutations in O(1)-time while using O(1) additional variables. Applications of these results include more efficient exhaustive solutions to stacker-crane problems, which are natural NP-complete traveling salesman variants. This thesis also produces the fastest algorithm for generating balanced parentheses in an array, and the first minimal-change order for fixed-content necklaces and Lyndon words.
These results are consequences of the following theorem: Every bubble language has a right-shift Gray code. Bubble languages are fixed-content languages that are closed under certain adjacent-transpositions. These languages generalize classic combinatorial objects: k-ary trees, ordered trees with fixed branching sequences, unit interval graphs, restricted Schr oder and Motzkin paths, linear-extensions of B-posets, and their unions, intersections, and quotients. Each Gray code is circular and is obtained from a new variation of lexicographic order known as cool-lex order.
Gray codes using only shift(s, 1, n) and shift(s, 1, n−1) are also found for multiset permutations. A universal cycle that omits the last (redundant) symbol from each permutation is obtained by recording the first symbol of each permutation in this Gray code. As a special case, these shorthand universal cycles provide a new fixed-density analogue to de Bruijn cycles, and the first universal cycle for the "middle levels" (binary strings of length 2k + 1 with sum k or k + 1).
|
Page generated in 0.0492 seconds