• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-Board Data Aquisition System : Conceptual Design of an Airdrop Tracking System

Eriksson, Hanna January 2019 (has links)
This thesis is, on behalf of Saab AB, a pre-study of possible on-board solutions for position measuring during store separation tests aimed for the test and evaluation of JAS 39 Gripen. The purpose is to replace the present ground-based system in order to achieve more effective trials regarding time and economy. Three different concept development methodologies were investigated in order to find the most suitable one for this thesis. Those were merged into one adapted methodology containing the following phases; \textit{Planning}, \textit{Function Analysis}, \textit{Concept Generation} and \textit{Concept Evaluation}. The work progressed as the methodology states, and the highest amount of work was dedicated to the Planning phase. The requirements and desiderata for the system were produced with an agile process, resulting in the Construction Specification List that eventually became the basis for the Concept Generation phase. Knowledge about the technical theory needed to solve the problem was obtained in parallel with the Function Analysis and Concept Generation. The most adaptable techniques to measure position were found out to be with the use of the Global Positioning System (GPS) or Inertial Navigation System (INS). After an extensive work with the Concept Generation in parallel with a continuously updated Construction Specification List, three concepts were developed. One concept is based on GPS, the second one on INS and the third one is a combination of GPS and INS. All three concepts shares the same telemetry system and casing, which fulfills the requirement of simple installation and possibility to install in different stores. In the final phase, Concept Evaluation, a comparison between the concepts was performed. Advantages and disadvantages was listed and the fulfillment of requirements was investigated. All three concepts were handed over to Saab in order to let them decide which concept(s) to further develop.
2

Konstrukční návrh lineární osy pro těžký obráběcí stroj / Design of linear axis for heavy machine tool

Horák, Miroslav January 2019 (has links)
This diploma thesis deals with the design of linear axis for heavy machine tool. The thesis describes the definition of heavy machine tool and its basic construction nodes. The next chapter describes the components of the linear feed assemblages, the basic principles of use and their advantages and disadvantages. On the basis of this research part there are selected variants of the solution and in the last part of the thesis there is a design of the axis X of the gantry machine tool. Part of the work is a 3D model of the proposed feed assemblages and part of the drawing documentation.
3

Beiträge zur Richtighaltung von Kreisformmessgeräten

Miethling, Klaus-Dietmar 04 May 2016 (has links) (PDF)
In der Arbeit werden normativ-technische und verfahrenstechnische Voraussetzungen zur Richtighaltung von Kreisformmessgeräten dargelegt. Dazu wird ein umfassendes Begriffssystem für die allgemeine Beschreibung von Bewegungsabweichungen von bewegten Bauteilen an Werkzeugmaschinen oder Formmessgeräten, z.B. Kreisformmessgeräten, als Grundlage für ihre Tolerierung und Messung vorgeschlagen. Bekannte Messverfahren zur Bestimmung von Rotationsabweichungen der Spindel von Kreisformmessgeräten werden theoretisch und praktisch untersucht. Es wird ein neues Messverfahren, das kontinuierliche Relativlagenmessverfahren, entwickelt und ebenfalls untersucht. Die untersuchten Messverfahren zur Bestimmung von Rotationsabweichungen ermöglichen verschiedene Messunsicherheiten bis zu weniger als 0,02 µm. Vorschläge für die Gestaltung des Prüfschemas zur Richtighaltung von Kreisformmessgeräten werden unterbreitet. auch unter: Zentralbibliothek/Magazin/MPF1443
4

Beiträge zur Richtighaltung von Kreisformmessgeräten

Miethling, Klaus-Dietmar 10 June 1988 (has links)
In der Arbeit werden normativ-technische und verfahrenstechnische Voraussetzungen zur Richtighaltung von Kreisformmessgeräten dargelegt. Dazu wird ein umfassendes Begriffssystem für die allgemeine Beschreibung von Bewegungsabweichungen von bewegten Bauteilen an Werkzeugmaschinen oder Formmessgeräten, z.B. Kreisformmessgeräten, als Grundlage für ihre Tolerierung und Messung vorgeschlagen. Bekannte Messverfahren zur Bestimmung von Rotationsabweichungen der Spindel von Kreisformmessgeräten werden theoretisch und praktisch untersucht. Es wird ein neues Messverfahren, das kontinuierliche Relativlagenmessverfahren, entwickelt und ebenfalls untersucht. Die untersuchten Messverfahren zur Bestimmung von Rotationsabweichungen ermöglichen verschiedene Messunsicherheiten bis zu weniger als 0,02 µm. Vorschläge für die Gestaltung des Prüfschemas zur Richtighaltung von Kreisformmessgeräten werden unterbreitet. auch unter: Zentralbibliothek/Magazin/MPF1443:Verzeichnis der verwendeten Abkuerzungen V Vorwort VII 1. Einleitung 1 2. Grundlagen der radiusbezogenen Kreisformmessung 2 2.1. Eliminierung der Exzentrizitaet 2 2.2. Messunsicherheit der Kreisformmessung 3 2.3. Bewegung eines rotierenden Teiles 3 3. Begriffe und Definitionen zur Bewegung eines Teiles 5 3.1. Allgemeine Bemerkungen 5 3.2. Internationaler Stand 9 3.2.1. Bekannte Begriffe und Definitionen fuer die Bewegung eines Teiles 10 3.2.2. Bekannte Begriffe und Definitionen fuer die Bewegung eines rotierenden Teiles 11 3.2.3. Einschaetzung 14 3.3. Aufgabenstellung zur Erarbeitung von Begriffen und Definitionen 15 3.4. Vorschlag fuer neue Begriffe und Definitionen 16 3.4.1. Vorbemerkungen 16 3.4.2. Begriffe fuer die Verschiebung eines Punktes eines bewegten Teiles 19 3.4.2.1. Begriffe fuer die allgemeine Bewegung 19 3.4.2.2. Begriffe fuer die Rotation 21 3.4.2.3. Begriffe fuer die Translation 23 3.4.2.4. Erlaeuterungen zu den Begriffen 25 3.4.3. Begriffe fuer die Verdrehung einer Strecke eines bewegten Teiles 31 3.4.3.1. Begriffe fuer die allgemeine Bewegung 31 3.4.3.2. Begriffe fuer die Rotation und Translation 37 3.4.3.3. Erlaeuterungen zu den Begriffen 37 3.5. Vergleich und Einschaetzung der neuen Definitionen 43 3.6. Zeichnungsangaben von Bewegungs- und Verdrehungsabweichungen 49 4. Messverfahren zur Bestimmung von Rotationsabweichungen 51 4.1. Theoretische Untersuchungen 52 4.1.1. Vergleichsmessverfahren 53 4.1.2. Mehrlagenmessverfahren 54 4.1.2.1. Umkehrmessverfahren 55 4.1.2.2. Relativlagenmessverfahren 57 4.1.2.2.1. Relativlagenmessverfahren mit zwei Messstellungen 58 4.1.2.2.2. Relativlagenmessverfahren mit punktweiser Berechnung 59 4.1.2.2.3. Relativlagenmessverfahren mit Fourier-Reihen- Berechnung 60 4.1.2.3. Kontinuierliches Relativlagenmessverfahren 61 4.1.3. Weitere Messverfahren 64 4.1.3.1. Frequenztrennmessverfahren 64 4.1.3.2. Fotodiodensignalmessverfahren 65 4.1.4. Einschaetzung 66 4.2. Messtechnische Untersuchungen 67 4.2.1. Relativlagenmessverfahren mit punktweiser Berechnung 68 4.2.2. Vergleichsmessverfahren 73 4.2.3. Kontinuierliches Relativlagenmessverfahren 76 4.2.4. Einschaetzung 86 4.3. Messverfahren zur Richtighaltung von Kreisformmessgeraeten 87 5. Metrologische Richtighaltung 88 5.1. Pruefschema fuer Kreisformmessgeraete 90 5.1.1. Spezialnormal der Laenge fuer die Kreisform 91 5.1.2. Referenznormale 91 5.1.3. Arbeitsmessmittel 92 5.2. Pruefvorschriften fuer Kreisformmessmittel 93 5.2.1. Pruefvorschriften fuer die Eichung der Haupt- normale 93 5.2.2. Betriebliche Pruefvorschriften fuer Kreisformmessgeraete 93 5.3. Einschaetzung 95 6. Weitere Aufgaben 95 Verzeichnis der Anmerkungen 97 Literaturverzeichnis 98 Verzeichnis der Abbildungen 105 Verzeichnis der Anlagen 108 Anlagen 110 Thesen
5

Bestimmung der Rotorlage in aktiven Magnetlagern durch Messung magnetischer Streuflüsse

Rudolph, Johannes 06 July 2023 (has links)
In dieser Arbeit wird die Möglichkeit untersucht, durch die Messung magnetischer Streuflüsse und unter Berücksichtigung der durch die Steuerströme hervorgerufenen Durchflutung, auf die Position des Rotors im Magnetlager zu schließen. Die Streuflüsse werden in der Regel vernachlässigt, stehen aber im unmittelbaren Zusammenhang zur Luftspaltlänge, wie theoretische Betrachtungen zeigen. Anhand von analytischen und numerischen Modellen, welche durch Messungen verifiziert werden, ist eine Linearisierung und Kompensation des Einflusses der Durchflutung möglich. Auf dieser Basis wird ein Messsystem entwickelt, mit dem die streuflussbasierte Positionsregelung eines Testlagers realisiert wird. Hierfür kommen Hall-Sensoren zum Einsatz, die auf Leiterplatten sitzen, welche anstelle der konventionellen Nutverschlüsse in das Magnetlager eingebracht werden. Aufgrund der direkten Nähe der Sensoren zu den Lagerspulen und der gepulsten Steuerströme weisen die Messsignale jedoch ein erhebliches Rauschen auf. Um dem entgegenzuwirken, kommt ein Kalman-Filter zum Einsatz, mit dem eine deutliche Verbesserung der Signalqualität erreicht werden kann.:Verzeichnis der Formelzeichen, Indizes und Abkürzungen vii 1 Einleitung 1 1.1 Exkurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Systematik magnetischer Lager . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Sensoren für Magnetlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Sensorlose Magnetlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Motivation und Struktur der Arbeit . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 Motivation und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.2 Struktur der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Theoretische Betrachtungen zu magnetischen Streuflüssen 17 2.1 Magnetische Streuflüsse in Magnetlagern . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Heteropolarlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Homopolarlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Dreischenkliges Magnetlager . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Verallgemeinertes Reluktanzmodell . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Zusammenhang zwischen Luftspaltlänge und Streuflussdichte . . . . . . . . 28 2.3.1 Intrapolarer Streufluss . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Interpolarer Streufluss . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Betrachtung der magnetischen Streuflüsse mit Hilfe numerischer Rechnungen 33 2.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Magnetische Streuflüsse im realen Magnetlager 39 3.1 Auswahl eines geeigneten Lagertyps und möglicher Messpositionen . . . . . 39 3.1.1 Streuflüsse bei Rotorverschiebung entlang der x- und y-Achse . . . . 41 3.1.2 Streuflüsse bei Rotorverschiebung entlang der a- und b-Achse . . . . 43 3.1.3 Änderung der Streuflüsse bei Querverschiebung des Rotors . . . . . 45 3.2 Nutzbarkeit der intra- und interpolaren Streuflüsse als Lagemesssystem . . 48 3.3 Vergleich gemessener und berechneter Streuflusswerte . . . . . . . . . . . . 52 3.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Realisierung des Messsystems 57 4.1 Erstellung von Kennfeldern . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 v Inhaltsverzeichnis 4.3 Messsystem zur Messung der magnetischen Streuflussdichte . . . . . . . . . 60 4.3.1 Auswahl geeigneter Bauelemente . . . . . . . . . . . . . . . . . . . . 62 4.3.2 Sensordesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.3 Kalibrierung der Sensoren . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Statische und dynamische Eigenschaften des streuflussbasierten Messsystems 69 4.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Betrachtungen zur Verbesserung der Signalqualität 75 5.1 Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.1 Übertragungsverhalten der Messsysteme . . . . . . . . . . . . . . . . 76 5.1.2 Elektromagnetisches Modell . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.3 Mechanisches Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.1.4 Modellierung variabler Induktivitäten . . . . . . . . . . . . . . . . . 93 5.1.5 Stromrichter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 Kalman-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6 Zusammenfassung und Ausblick 115 6.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 A Mathematische Überlegungen zu Streuflussfunktionen 121 A.1 Grenzwerte für den intrapolaren Streufluss . . . . . . . . . . . . . . . . . . . 121 A.2 Anstieg intrapolare Streuflussfunktion . . . . . . . . . . . . . . . . . . . . . 122 A.3 Maximum des interpolaren Streuflusses . . . . . . . . . . . . . . . . . . . . . 123 B Tabellen 127 B.1 Gemessene Streuflüsse an verschiedenen Rotorpositionen und unterschiedlichen resultierenden Steuerströmen . . . . . . . . . . . . . . . . . . . . . . . 127 B.2 Ströme und Positionen nach Streuflussmesswerten sortiert . . . . . . . . . . 128 C Schaltpläne, technische Zeichnungen und Blockschaltbilder 129 C.1 Schaltplan Streuflusssensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 C.2 Kalibrierschaltung des Messkonverters . . . . . . . . . . . . . . . . . . . . . 130 C.3 Beispielgeometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 C.4 Magnetlagerrotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.5 Blockschaltbild des Modells eines Stromrichters . . . . . . . . . . . . . . . . 131 Literaturverzeichnis 133 Thesen 141 / In this work, the possibility of inferring the position of the rotor in magnetic bearings by measuring magnetic leakage fluxes is investigated. These are usually neglected, but are directly related to the air gap length, as theoretical considerations show. In addition, the magnetic flux caused by the control currents must be taken into account. By means of analytical and numerical models, which are verified by measurements, a linearization and compensation of the influence of the magnetic flux is possible. Based on this, a measurement system is developed to realize a flux leakage-based position control of a test bearing. For this purpose, Hall-sensors are used, which are located on printed circuit boards that are inserted into the magnetic bearing instead of the conventional slot locks. However, due to the direct proximity of the sensors to the bearing coils and the pulsed control currents, the measurement signals exhibit considerable noise. To counteract this, a Kalman-filter is used to achieve a significant improvement in signal quality.:Verzeichnis der Formelzeichen, Indizes und Abkürzungen vii 1 Einleitung 1 1.1 Exkurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Systematik magnetischer Lager . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Sensoren für Magnetlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Sensorlose Magnetlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Motivation und Struktur der Arbeit . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 Motivation und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.2 Struktur der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Theoretische Betrachtungen zu magnetischen Streuflüssen 17 2.1 Magnetische Streuflüsse in Magnetlagern . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Heteropolarlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Homopolarlager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.3 Dreischenkliges Magnetlager . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Verallgemeinertes Reluktanzmodell . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Zusammenhang zwischen Luftspaltlänge und Streuflussdichte . . . . . . . . 28 2.3.1 Intrapolarer Streufluss . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Interpolarer Streufluss . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Betrachtung der magnetischen Streuflüsse mit Hilfe numerischer Rechnungen 33 2.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Magnetische Streuflüsse im realen Magnetlager 39 3.1 Auswahl eines geeigneten Lagertyps und möglicher Messpositionen . . . . . 39 3.1.1 Streuflüsse bei Rotorverschiebung entlang der x- und y-Achse . . . . 41 3.1.2 Streuflüsse bei Rotorverschiebung entlang der a- und b-Achse . . . . 43 3.1.3 Änderung der Streuflüsse bei Querverschiebung des Rotors . . . . . 45 3.2 Nutzbarkeit der intra- und interpolaren Streuflüsse als Lagemesssystem . . 48 3.3 Vergleich gemessener und berechneter Streuflusswerte . . . . . . . . . . . . 52 3.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Realisierung des Messsystems 57 4.1 Erstellung von Kennfeldern . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Versuchsaufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 v Inhaltsverzeichnis 4.3 Messsystem zur Messung der magnetischen Streuflussdichte . . . . . . . . . 60 4.3.1 Auswahl geeigneter Bauelemente . . . . . . . . . . . . . . . . . . . . 62 4.3.2 Sensordesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.3 Kalibrierung der Sensoren . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4 Statische und dynamische Eigenschaften des streuflussbasierten Messsystems 69 4.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Betrachtungen zur Verbesserung der Signalqualität 75 5.1 Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.1 Übertragungsverhalten der Messsysteme . . . . . . . . . . . . . . . . 76 5.1.2 Elektromagnetisches Modell . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.3 Mechanisches Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.1.4 Modellierung variabler Induktivitäten . . . . . . . . . . . . . . . . . 93 5.1.5 Stromrichter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 Kalman-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.3 Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6 Zusammenfassung und Ausblick 115 6.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 A Mathematische Überlegungen zu Streuflussfunktionen 121 A.1 Grenzwerte für den intrapolaren Streufluss . . . . . . . . . . . . . . . . . . . 121 A.2 Anstieg intrapolare Streuflussfunktion . . . . . . . . . . . . . . . . . . . . . 122 A.3 Maximum des interpolaren Streuflusses . . . . . . . . . . . . . . . . . . . . . 123 B Tabellen 127 B.1 Gemessene Streuflüsse an verschiedenen Rotorpositionen und unterschiedlichen resultierenden Steuerströmen . . . . . . . . . . . . . . . . . . . . . . . 127 B.2 Ströme und Positionen nach Streuflussmesswerten sortiert . . . . . . . . . . 128 C Schaltpläne, technische Zeichnungen und Blockschaltbilder 129 C.1 Schaltplan Streuflusssensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 C.2 Kalibrierschaltung des Messkonverters . . . . . . . . . . . . . . . . . . . . . 130 C.3 Beispielgeometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 C.4 Magnetlagerrotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.5 Blockschaltbild des Modells eines Stromrichters . . . . . . . . . . . . . . . . 131 Literaturverzeichnis 133 Thesen 141

Page generated in 0.1017 seconds