• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 36
  • 28
  • Tagged with
  • 110
  • 100
  • 86
  • 72
  • 43
  • 41
  • 39
  • 33
  • 32
  • 32
  • 31
  • 31
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Positron Emission Tomography for the dose monitoring of intra-fractionally moving Targets in ion beam therapy

Stützer, Kristin 26 June 2014 (has links) (PDF)
Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumour conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumour volume to reach higher tumour control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumour entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumour sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany. High standards for quality assurance are required in IBT to ensure a safe and precise dose application. Both underdosage in the tumour and overdosage in the normal tissue might endanger the treatment success. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. It makes use of the tissue autoactivation by nuclear fragmentation reactions occurring along the beam path. Among others, +-emitting nuclides are generated and decay according to their half-life under the emission of a positron. The subsequent positron-electron annihilation creates two 511 keV photons which are emitted in opposite direction and can be detected as coincidence event by a dedicated PET scanner. The induced three-dimensional (3D) +- activity distribution in the patient can be reconstructed from the measured coincidences. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two +-activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. This workflow has been proven to be valuable for the dose monitoring in IBT when it was applied for about 440 patients, mainly suffering from deep-seated head and neck tumours that have been treated with 12C ions at GSI. In the presence of intra-fractional target motion, the conventional 3D PET data processing will result in an inaccurate representation of the +-activity distribution in the patient. Fourdimensional, time-resolved (4D) reconstruction algorithms adapted to the special geometry of in-beam PET scanners allow to compensate for the motion related blurring artefacts. Within this thesis, a 4D maximum likelihood expectation maximization (MLEM) reconstruction algorithm has been implemented for the double-head scanner Bastei installed at GSI. The proper functionality of the algorithm and its superior performance in terms of suppressing motion related blurring artefacts compared to an already applied co-registration approach has been demonstrated by a comparative simulation study and by dedicated measurements with moving radioactive sources and irradiated targets. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the successful reduction of motion artefacts from a measurement with rotating (two-dimensional moving) radioactive sources. For 1D cos2 and cos4 motion, it has been clearly illustrated by systematic point source measurements that the motion influence can be better compensated with the same number of motion phases if amplitudesorted instead of time-sorted phases are utilized. In any case, with an appropriate parameter selection to obtain a mean residual motion per phase of about half of the size of a PET crystal size, acceptable results have been achieved. Additionally, it has been validated that the 4D MLEM algorithm allows to reliably access the relevant parameters (particle range and lateral field position and gradients) for a dose verification in intra-fractionally moving targets even from the intrinsically low counting statistics of IBT-PET data. To evaluate the measured +-activity distribution, it should be compared to a simulated one that is expected from the moving target irradiation. Thus, a 4D version of the simulation software is required. It has to emulate the generation of +-emitters under consideration of the intra-fractional motion, their decay at motion state dependent coordinates and to create listmode data streams from the simulated coincidences. Such a revised and extended version that has been compiled for the special geometry of the Bastei PET scanner is presented within this thesis. The therapy control system provides information about the exact progress of the motion compensated dose delivery. This information and the intra-fractional target motion needs to be taken into account for simulating realistic +-activity distributions. A dedicated preclinical phantom simulation study has been performed to demonstrate the correct functionality of the 4D simulation program and the necessity of the additional, motionrelated input parameters. Different to the data evaluation for static targets, additional effort is required to avoid a potential misleading interpretation of the 4D measured and simulated +-activity distributions in the presence of deficient motion mitigation or data processing. It is presented that in the presence of treatment errors the results from the simulation might be in accordance to the measurement although the planned and delivered dose distribution are different. In contrast to that, deviations may occur between both distributions which are not related to anatomical changes but to deficient 4D data processing. Recommendations are given in this thesis to optimize the 4D IBT-PET workflow and to prevent the observer from a mis-interpretation of the dose monitoring data. In summary, the thesis contributes on a large scale to a potential future application of the IBT-PET monitoring for intra-fractionally moving target volumes by providing the required reconstruction and simulation algorithms. Systematic examinations with more realistic, multi-directional and irregular motion patterns are required for further improvements. For a final rating of the expectable benefit from a 4D IBT-PET dose monitoring, future investigations should include real treatment plans, breathing curves and 4D patient CT images.
52

Thermische Entwicklung atomarer freier Volumen und Kristallisation in Si-(B)-C-N-Precursor-Keramiken

Reichle, Klaus Jürgen. January 2003 (has links)
Stuttgart, Univ., Diss., 2003.
53

Guanidine-acylguanidine bioisosteric approach to address peptidergic receptors : pharmacological and diagnostic tools for the NPY Y1 receptor and versatile building blocks based on arginine substitutes

Keller, Max January 2008 (has links)
Regensburg, Univ., Diss., 2008.
54

Entwicklung einer biologisch adaptierten intensitätsmodulierten Strahlentherapieplanung auf der Basis molekularbiologischer Bildgebungsverfahren /

Rickhey, Mark. January 2009 (has links)
Zugl.: Regensburg, Universiẗat, Diss., 2008.
55

Zweifache Messung des zerebralen Glukosemetabolismus mit F18-FDG PET in einer einzelnen Untersuchung Modulation kortikaler Aktivierungsmuster durch passive audiovisuelle Stimulation bei Patienten mit Alzheimer Demenz und Depression /

Strätz, Mareike Christa. January 2004 (has links) (PDF)
München, Techn. Univ., Diss., 2004.
56

Thermische Entwicklung atomarer freier Volumen und Kristallisation in Si-(B)-C-N-Precursor-Keramiken

Reichle, Klaus Jürgen. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Stuttgart.
57

Normalization Of Image Reconstruction In Positron Emission Tomography By Means Of A Homogeneous Phantom For Utilization In Lab Courses

Sudzius, Benas 09 September 2021 (has links)
Three dimensional positron emission tomography (PET) plays an important role in cancer soil studies by enabling detection and localization of tumor cells. This thesis investigates the ClearPET measuring system. Central matter of interest is the reconstruction process. There is to be examined how accurate the ClearPET can reconstruct known interrelations between source activities. The optimization of this process is accomplished by normalizing the reconstruction image by means of a homogeneous phantom. In case of this experimental setup the phantom is a cylinder with a homogeneous activity distribution.:1 Introduction 2 Material and Methods 2.1 Measuring system 2.1.1 Measuring procedure 2.1.2 Cassettes 2.1.3 Homogeneous phantom 2.2 Physical background 2.2.1 Compton scattering 2.2.2 Attenuation coefficient 2.2.3 Types of radiation 2.2.4 Sodium-22 and related physical phenomena 2.3 Reconstruction process 2.3.1 Intensity and Beer’s law 2.3.2 Radon transform and its inverse 2.3.3 OSMAPOSL algorithm 2.4 Fourier rebinning algorithm 3 Experimental results 25 3.1 Reconstruction routine 3.2 Back projection of point sources 3.2.1 Full width half maximum analysis of the strong point source 3.2.2 Investigation of the statistical error 3.2.3 Validation of the maxima approach 3.3 Comparison of activities and quantification of spatial reconstruction behavior . 3.4 Normalization measurement 3.5 Sinogram 3.6 Reconstruction with the OSMAPOSL algorithm 3.7 Implementation of attenuation correction and multiple iterations of the OSMAPOSLalgorithm 4 Summary
58

Methodische Untersuchungen zum Einsatz der Positronen-Emissions-Tomographie in der Leichtionen-Tumortherapie: Dissertation

Pawelke, Jörg January 1995 (has links)
nicht vorhanden
59

Verbesserung der Rekonstruktion an einem Ausbildungs-Positronen-Emissions-Tomographen mit dem Ziel der aktivitätstreuen Bildinterpretation

Michel, Martin 08 August 2022 (has links)
Die Positronen-Emissions-Tomographie (PET) ist ein wichtiges medizinisches Bildgebungsverfahren und findet Anwendung in der Untersuchung von Krebs und Stoffwechselvorgängen, die mit Hilfe von Beta-Plus-Emittern sichtbar gemacht werden können. Dabei ist eine quantitative Auswertung wichtig um unabhängige und vergleichbare Ergebnisse zu erhalten. Am IKTP wird zur Vermittlung dieser Inhalte im Physikstudium ein Kleintier-PET-Scanner betrieben. In dieser Arbeit soll die Bildrekonstruktion an diesem Gerät bezüglich der Aktivitätsbestimmung weiter verbessert werden. Dafür werden Anpassungen an der Normalisierung für den iterativen OSMAPOSL-Algorithmus vorgenommen, um Schwächung und Streuung zu berücksichtigen. Dies bildet die Grundlage für eine reproduzierbare Darstellung bekannter Aktivitätsverhältnisse und damit einer aktivitätstreuen Bildinterpretation an diesem Gerät.
60

Optimierung der Positronen-Emissions-Tomographie bei der Schwerionentherapie auf der Basis von Röntgentomogrammen

Pönisch, Falk 16 April 2003 (has links) (PDF)
Die Positronen-Emissions-Tomographie (PET) bei der Schwerionentherapie ist eine wichtige Methode zur Qualitätskontrolle in der Tumortherapie mit Kohlenstoffionen. Die vorliegende Arbeit beschreibt die Verbesserungen des PET-Verfahrens, wodurch sich in der Folge präzisere Aussagen zur Dosisapplikation treffen lassen. Aufbauend auf den Grundlagen (Kap. 2) werden die Neuentwicklungen in den drei darauf folgenden Abschnitten (Modellierung des Abbildungsprozesses bei der PET, Streukorrektur für PET bei der Schwerionentherapie, Verarbeitung der rekonstruierten PET-Daten) beschrieben. Die PET-Methode bei der Schwerionentherapie basiert auf dem Vergleich zwischen den gemessenen und vorausberechneten Aktivitätsverteilungen. Die verwendeten Modelle in der Simulation (Erzeugung der Positronenemitter, deren Ausbreitung, der Transport und der Nachweis der Annihilationsquanten) sollten so präzise wie möglich sein, damit ein aussagekräftiger Vergleich möglich wird. Die Genauigkeit der Beschreibung der physikalischen Prozesse wurde verbessert und zeiteffiziente Algorithmen angewendet, die zu einer erheblichen Verkürzung der Rechenzeit führen. Die erwarteten bzw. die gemessenen räumlichen Radioaktivitätsverteilungen werden mit einem iterativen Verfahren rekonstruiert [Lau99]. Die gemessenen Daten müssen hinsichtlich der im Messobjekt auftretenden Comptonstreuung der Annihilationsphotonen korrigiert werden. Es wird ein geeignetes Verfahren zur Streukorrektur für die Therapieüberwachung vorgeschlagen und dessen Realisierung beschrieben. Zur Einschätzung der Güte der Behandlung wird die gemessene und die simulierte Aktivitätsverteilung verglichen. Dazu wurde im Rahmen der vorliegenden Arbeit eine Software entwickelt, das die rekonstruierten PET-Daten visualisiert und die anatomischen Informationen des Röntgentomogramms mit einbezieht. Nur durch dieses Auswerteverfahren war es möglich, Fehler im physikalischen Strahlmodell aufzudecken und somit die Bestrahlungsplanung zu verbessern.

Page generated in 0.0723 seconds