1 |
Kostnaden för CCS vid Cementa AB i DegerhamnNyberg, Jesper January 2016 (has links)
CCS, Carbon Capture and Storage, innebär infångning och lagring av koldioxid från stora punktutsläpp. Detta gör cementindustrin aktuell för implementering av CCS. Stora delar av branschens koldioxidutsläpp går inte att eliminera på annat sätt. Kostnaden för monoetanolamin-baserad post-combustion capture med efterföljande transport och lagring av koldioxiden vid cementfabriken Cementa AB i Degerhamn undersöktes. Studiens kostnadsberäkningar är baserade på publicerade uppgifter om kostnaden för koldioxidinfångning vid den norska cementfabriken Norcem Brevik, och på publicerade uppgifter om kostnaden för transport av koldioxid till en lagringsplats i Östersjön. Cementa Degerhamns koldioxidutsläpp kan reduceras med 5,4 miljoner ton under en 25-årsperiod till en kostnad av 2,2 miljarder SEK. Slutresultatet, som uttrycks i måttet Cost of CO2 avoided, ger en kostnad på 890 SEK/ton CO2. En känslighetsanalys visar att av de undersökta parametrarna är storleken på koldioxidutsläppen och kostnaden för användning och underhåll viktigast för storleken på Cost of CO2 avoided. Vidare studier behövs för en mer exakt beräkning av kostnaden för CCS vid Cementa Degerhamn. / CCS, Carbon Capture and Storage, involves the capture and storage of carbon dioxide from large point sources. This makes the cement industry suitable for the implementation of CCS. Large parts of the industry's carbon dioxide emissions cannot be eliminated by other means. The cost of monoethanolamine-based post-combustion capture and subsequent transport and storage of the carbon dioxide at the cement factory Cementa AB in Degerhamn was studied. This study's cost estimates are based on published data on the cost of carbon capture at the Norwegian cement plant Norcem Brevik, and on published data on the cost of transport of carbon dioxide to a storage site in the Baltic Sea. Cementa Degerhamn’s carbon dioxide emissions can be reduced by 5.4 million tons over a 25 year period to a cost of 2.2 billion SEK. The result, expressed in Cost of CO2 avoided, gives a cost of 890 SEK/ton CO2. A sensitivity analysis shows that of the examined parameters, the size of the carbon dioxide emissions and the cost of use and maintenance are the most important for the size of Cost of CO2 avoided. Further studies are required for a more accurate calculation of the cost of CCS at Cementa Degerhamn.
|
2 |
Metal-Organic Frameworks for Post-Combustion Carbon Capture - A Life Cycle AssessmentGu, Xiangming 24 August 2018 (has links)
No description available.
|
3 |
Techno-Economic Assessment of a Post-Combustion CO2 Capture Unit in SCA Östrand Pulp Mill / Tekno-Ekonomisk Utvärdering av Intergrering av en Efterbrännings CO2 Avskiljningsenhet vid SCA Östrand MassabrukSubramani, Abhishek January 2022 (has links)
The Paris Agreement has ambitious targets to limit the global warming below 1.5 °Cin the 21st century. This goal is reflected in the national climate targets, for example, Sweden aims to achieve net zero greenhouse gas emissions by 2045, and thereafter achieve negative emissions. One of the pivotal ways to achieve these goals is by applying the mature bioenergy with carbon capture and storage (BECCS) technology to large-scale industries that emit CO2. Around 6% of the global emissions arise from the pulp and paper industry making them one of the largest localized emitters of biogenic CO2. This makes them suitable for retrofitting BECCS technologies and post-combustion capture (PCC) is one among them. This study presents a techno-economic assessment of an absorption-based PCC unit in SCA Östrand pulp mill. Chemical absorption using MEA and chilled ammonia process (CAP) using NH3 as the solvent are considered in this study. For both the processes, mass and energy balances using Aspen HYSYS were done and validated against published data in literature. Heat integration by applying excess or waste heat from the mill is also considered in this work. CO2 capture from flue gas originating from various emission sources in the mill (recovery boiler, lime kiln and multi-fuel boiler) are considered in different combinations in the analysis. The main key performance indicator (KPI) evaluated in this work is the cost of CO2capture for all the different cases for both the MEA- and chilled NH3-based absorption processes. The minimum cost of CO2 capture for MEA-based absorption process was found to be in the range 37-41 €/tCO2 and for CAP, it was found to be in the range 73-81 €/tCO2. For MEA-based absorption process, the excess low pressure steam from the mill satisfies the steam demand in all the cases, except the one where CO2 is captured from all the three emission sources. For CAP, sufficient excess low pressure steam is present in the mill for all the capture cases due to a lower reboiler duty compared to MEA-based absorption process. An optimal process configuration and capture scenario for the existing design conditions in the mill are derived and justified. A sensitivity analysis was carried out to find the associated bottlenecks from the breakdown of the cost of CO2 capture for each process. The overall BECCS cost is also sensitive to CO2 transport & storage costs. However, it is also clear that incentives for negative emissions will make BECCS an attractive solution for the pulp and paper industry.
|
4 |
Carbon capture using aerosol technology / Koldioxidavskiljning med hjälp av aerosolteknikMeus, Pierre January 2023 (has links)
Utveckling av en innovativ teknologi för koldioxidavskiljning med användning av aerosoldroppar av en kaliumkarbonatlösning. Laboratorieexperiment för att studera koldioxidabsorptionsprocessen under olika driftsförhållanden (temperatur, K2CO3- och CO2-koncentration, mängd genererad aerosol) / Development of an innovative technology for carbon capture using aerosol droplets of a potassium carbonate solution. Laboratory experiments to study CO2 absorption process with various operating conditions (temperature, K2CO3 and CO2 concentration, amount of aerosol generated)
|
5 |
Comparaison du captage du CO2 en postcombustion par des solutions d'ammoniaque et d'amines organiques : Évaluation en contacteurs direct et indirect, par des approches cinétiques, thermodynamiques et par modélisation / Comparison of post-combustion CO2 capture by solutions of ammonia and organic amines : Assessment using direct and indirect contactors by kinetic, thermodynamic approaches and modelingToro Molina, Carol 26 June 2013 (has links)
Actuellement, la production d’énergie est de plus en plus associée à une hausse simultanée d’émissions de Gaz à Effet de Serre (GES). Malgré les inquiétudes concernant les GES dans l’atmosphère, les énergies fossiles resteront probablement longtemps la principale source d’énergie primaire à l’échelle mondiale. Le procédé de captage de CO2, principal gaz à effet de serre, généralement préconisé est un procédé d’absorption chimique avec de la monoéthanolamine (MEA). Ce procédé pose de nombreux problèmes comme le coût de la régénération de l’amine. Cette étude s’intéresse à une alternative consistant à absorber chimiquement le dioxyde de carbone dans une solution aqueuse d’ammoniac. Par ailleurs, dans le but d’améliorer les procédés de captage et d’intensifier le transfert gaz-liquide, des techniques de captage à base de membranes (contacteurs membranaires) ont été développées et couplées à l’absorption chimique. Dans un premier temps des mesures d’absorption du CO2 à partir d’une solution aqueuse d’ammoniac ont été réalisées. Ces mesures ont été effectuées entre 278 et 303 K dans un réacteur fermé de type cellule de Lewis. Le taux de charge maximum, la pression partielle du CO2 à l’équilibre ont été déterminés. Les performances ont été comparées à celles de solvants conventionnels tels que la MEA et la N-méthyldiéthanolamine (MDEA). Dans un second temps, des mesures d’absorption à travers un contacteur membranaire ont été réalisées. L’efficacité de captage est étudiée en fonction de la nature des matériaux constituants la membrane et des paramètres opératoires. Les résultats obtenus montrent qu’il est possible de capter le CO2 par l’ammoniaque à travers une membrane avec une efficacité de captage supérieure à 90 %. La membrane limite les pertes d’ammoniaque mais ne les élimine pas. La simulation du fonctionnement de la centrale thermique alimentée au charbon pulvérisé (CP) intégrant le captage de CO2 a été réalisée à l’aide du logiciel Aspen Plus. Les fumées issues de la post-combustion sont captées par différents solvants. Une étude paramétrique a été conduite afin de préciser les conditions optimales pour capter le CO2 par l’ammoniaque. Des comparaisons de dépense énergétique dans le cas de la régénération pour les solvants NH3, MEA et MDEA ont été réalisées. L’étude comparative suggère que l’absorption chimique utilisant l’ammoniaque comme solvant est un des procédés les plus intéressants pour la centrale CP. / Nowadays rising energy production is associated with increasingly greenhouse gases (GHG) emissions. Despite of concerns about GHG emissions in atmosphere, fossil fuels will probably remain the main source of primary energy for a long time. The process of CO2 (the main greenhouse gas) capture, generally recommended is the chemical absorption with monoethanolamine (MEA). This process has many problems such as the regeneration cost of amine. This study examines an alternative which consists in absorbing carbon dioxide by ammonia aqueous solution. Moreover, membranes have been developed and coupled to chemical absorption to improve the capture processes and to intensify the gas-liquid transfer. Firstly measurements of CO2 absorption from an aqueous ammonia solution have been conducted. These measurements have been made between 278 and 303 K in a closed reactor type Lewis cell. Maximum CO2 loading, CO2 partial pressure at equilibrium have been determined. The solvents performances have been compared with respect to conventional solvents such as MEA and N-methyldiethanolamine (MDEA). Secondly absorption measurements through a membrane contactor have been made. The influence of the material nature constituting the membrane and operating parameters on the capture efficiency has been studied. The results have shown that it is possible to capture CO2 from ammonia through a membrane with a capture efficiency greater than 90 %. The membrane limits ammonia losses but does not eliminate it. Operation simulation of the thermal power plant fed with pulverized coal (CP) including CO2 capture has been performed using the software Aspen Plus. The flue gases containing CO2 from post-combustion have been captured by different solvents. A parametric study has been conducted to clarify the optimal conditions to capture CO2 by ammonia. Comparisons of energy consumption in the case of solvent regeneration for NH3,MEA andMDEA have been performed. The comparative study suggests that the use of ammonia as a solvent in chemical absorption is the most interesting process for the central CP.
|
6 |
CO2 capture in industry using chilled ammonia process / CO2-fångst i industrin med kyld ammoniakprocessAmara, Soumia January 2021 (has links)
CO2 capture and storage (CCS) is estimated to reduce 14% of the global CO2 emissions in the 2 °C scenario presented by the International Energy Agency. Moreover, post combustion capture is identified as a potential method for CO2 capture from industry since it can be easily retrofitted without disturbing the core industrial process. Among the post-combustion capture methods, absorption using mono-ethanol amine (MEA) is the most mature technology that has been demonstrated at plant scale. However, using chilled ammonia process as a post combustion capture technology in a cement industry can reduce 47% energy penalty for CO2 capture when compared to the conventional MEA absorption method. Hence, the current project aims at analyzing the chilled ammonia process when integrated with steel and ammonia plants. Key performance indicator like specific primary energy consumption per kilogram of CO2 avoided (SPECCA) is estimated and compared with MEA absorption method. Firstly, chilled ammonia process (CAP) for cement plant was used as reference case. Then, CAP for steel and ammonia processes was optimized by the means of the decision variables affecting the capture and energy efficiency. The energy consumption per kg CO2 captured and SPECCA was lower for the higher CO2 concentration in the flue gas. Results for SPECCA were 3,56, 3,52 and 3,61 MJ/kg CO2 for cement, steel, and ammonia plants, respectively.
|
Page generated in 0.1033 seconds