• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 15
  • 7
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 74
  • 74
  • 74
  • 25
  • 25
  • 20
  • 19
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Facilitative Glucose Transporter And Its Regulation By Insulin/igf-Like Signaling In Caenorhabditis Elegans

Kitaoka, Shun 01 January 2015 (has links)
In humans, the functional regulation of facilitative glucose transporters (GLUTs) by insulin plays a central role in the maintenance of glucose homeostasis. The insensitivity of tissues to this regulation results in diabetes mellitus, however, the underlying mechanisms remain largely unknown. To establish Caenorhabditis elegans (C. elegans) as a model system to study the mechanisms of insulin regulation of GLUTs because of the well-conserved insulin/IGF-like signaling (IIS) and many unique advantages of this organism, we functionally characterized 9 candidate genes of human GLUT homologues in C. elegans based on their sequence homologies to GLUTs. We found that FGT-1 is the only functional GLUT homologue with the ability to transport 2-deoxy-D-glucose (2DG) in Xenopus oocytes. FGT-1 mediated 2DG transport could be inhibited by the GLUT inhibitor phloretin and exhibited a Michaelis constant (Km) of 2.8 mM, which is smaller than the Km values of human GLUT1 and GLUT4. In addition to glucose, FGT-1 could also transport mannose, galactose, and fructose. Using a FGT-1::GFP fusion construct under the control of the 5 kb promoter sequence of the fgt-1a gene, FGT-1 was shown to be ubiquitously expressed in C. elegans tissues and cells, including the digestive tract, neurons, and body wall muscle. Two FGT-1 alternative splicing isoforms, FGT-1A and FGT-1B, showed similar transport activity and tissue localization. To study the function of FGT-1 and its regulation by IIS, the changes in several phenotypes that are known to be regulated by IIS were observed in FGT-1-knockdown worms or null strains in the presence or absence of IIS activity. FGT-1 knockdown resulted in fat accumulation but had no effects on dauer formation or brood size in both wild-type and daf-2 (insulin receptor) gene mutant strains. However, the function of FGT-1 in animal growth and aging was dependent on the IIS background, suggesting IIS regulation of FGT-1 function. Consistently, FGT-1 mediated glucose uptake was almost completely defective in the daf-2 and age-1 (PI3 kinase) mutants, and phloretin could only marginally inhibit 2DG uptake in these strains. This defect was only partially related to the approximately 60% decrease in FGT-1 protein levels in these mutants, suggesting the involvements of both post-transcriptional and post-translational regulatory mechanisms. We also found that OGA-1, an O-GlcNAcase, is essential for the function of FGT-1, implying possible regulation of FGT-1 function by glycosylation. In summary, our study has established C. elegans as a powerful model to study the mechanism by which insulin regulates glucose transporters and has provided insights into the mechanism of defective glucose uptake by tissues in patients with diabetes.
12

La régulation post-transcriptionnelle des Cyclines D1, D3 et G1 par le complexe nucléaire IMP-3 dans les cancers humains / Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization

Rivera Vargas, Thaiz Dayana 23 September 2013 (has links)
La famille des protéines IMPs (IGF2 mRNA binding proteins) compte trois membres IMP1, 2 et 3. Les IMPs participent au développement embryonnaire. IMP1 et IMP3 sont considérées comme des protéines oncofoetales. En effet, malgré leur faible expression dans les tissus adultes, elles se retrouvent fortement surexprimées dans des cellules tumorales. Malgré la forte homologie entre les membres de la famille, les IMPs présentent des différences fonctionnelles qui restent très mal comprises jusqu’à présent. De nombreuses études montrent que la protéine IMP3 est très abondante dans de nombreux cancers tels que les carcinomes utérin, rénal, pulmonaire, les hépatocarcinomes et les rhabdomyosarcomes. Ces dernières années, IMP3 est devenu un marqueur de mauvais pronostique pour les patients atteins de cancer. Au cours de ma thèse j’ai principalement travaillé sur une lignée cellulaire de rhabdomyosarcomes (RMS). Les RMS sont des tumeurs principalement pédiatriques mais qui peuvent survenir à tout âge. En outre, la moitié des patients atteints des RMS meurent dans l'année suivant leur rechute et 90% des patients meurent dans les cinq ans suivant leur rechute. De nouvelles approches thérapeutiques sont absolument nécessaires. Mon sujet de thèse consiste à comprendre par quels mécanismes moléculaires les IMPs participent au processus oncogénique des RMS embryonnaires (eRMS). Pour cela, je me suis intéressée à la régulation des cyclines par les IMPs. Dans le cadre de mon projet, j’ai étudié l’effet des IMPs sur trois cyclines différentes : D1, D3 et G1. J’ai montré qu’IMP3, à la différence des deux autres, est capable de contrôler l’expression des cyclines D1, D3 et G1 dans les eRMS, ainsi que dans huit autres lignées de cancer humain différentes. Cette régulation a également des effets sur le cycle cellulaire des eRMS, expliquant l’importance d’IMP3 dans les cancers. Par diverses approches biochimiques, j’ai démontré que, sur les trois IMPs, seule IMP3 est très enrichie dans le noyau des eRMS, dans lequel elle forme des complexes avec les ARNm des CCND1, D3 et G1. Les différents résultats obtenus suggèrent un modèle selon lequel ces interactions au sein du noyau semblent indispensables à la régulation de la traduction des trois cyclines en protégeant leurs ARNm du complexe de silencing RISC (RNA induced silencing complex) et constituent donc la clé du mécanisme par lequel IMP3 contrôle la prolifération des cellules cancéreuses. / RNA-binding proteins of the IMP family (IGF2 mRNA-binding proteins 1-3) are key post-transcriptional regulatory factors of gene expression. They are known to control cell motility, adhesion, and proliferation. In our previous work, we show that all three IMP proteins can directly bind the mRNAs of cyclins D1, D3, and G1 (CCND1, D3, and G1) in vitro. Nevertheless, only IMP-3 regulates their expression in a significant manner in vivo, thus controlling proliferation of a number of human cancer cell lines. Importantly, the nuclear localization of IMP-3 is essential for the post-transcriptional regulation of the expression of CCND1, CCND3, and CCNG1 (CCNs). To elucidate the molecular mechanisms of IMP-3- specific regulation, we have identified its protein partners in human embryonic rhabdomyosarcoma (RMS) cells. We now show that in the nucleus and in the cytoplasm, IMP-3 interacts with a number or RNA-binding nucleocytoplasmic proteins, including DHX9, PTBP1, NF90, NF110, HNRNPA1, HNRNPA2/B1 and HuR. These IMP-3 partners have a dramatic impact on the protein levels of the cyclins. Interestingly, the decrease of CCNs protein synthesis in IMP-3 depleted cells can be fully reversed by down-regulating the key proteins of RNAi machinery, such as AGO2 and GW182. These findings suggest that IMP-3- dependent RNP complexes pre-assembled in the nucleus can protect their target mRNAs from cytoplasmic RNAi-dependent repression in human cancer cells.
13

MicroRNA Function in Cellular Stress Response

Sangokoya, Carolyn Olufunmilayo January 2012 (has links)
<p>MicroRNAs are key post-transcriptional regulators that have been found to play critical roles in the regulation of cellular functions. There is an emerging concept that microRNAs may be just as essential for fine-tuning physiological functions and responding to changing environments and stress conditions as for viability or development. In this dissertation, two studies are presented: The first study demonstrates a role for microRNA in the regulation of oxidative stress response in erythroid cells and the functional consequences of dysregulated microRNA expression in Sickle Cell Disease (SCD) pathobiology. The second study examines a functional role for microRNA in the cellular response to changes in cellular iron concentration. Together these studies illustrate the scope of importance of microRNAs in the coordination of cellular responses to diverse stresses. </p><p>Homozygous Sickle Cell (HbSS) erythrocytes are known to have reduced tolerance for oxidative stress, yet the basis for this phenotype has remained unknown. Here we use erythrocyte microRNA expression profiles to identify a subset of HbSS patients with higher miR-144 expression and more severe anemia. We reveal that in K562 erythroid cells and primary erythroid progenitor cells, miR-144 directly regulates NRF2, a central regulator of cellular response to oxidative stress, and modulates the oxidative stress response. We further demonstrate that increased miR-144 is associated with the reduced NRF2 levels, decreased glutathione regeneration, and attenuated antioxidant capacity found in HbSS erythroid progenitors, thereby providing a mechanism for the reduced oxidative stress tolerance and increased anemia severity seen in HbSS patients. </p><p>The post-transcriptional regulation of the IRP2 regulon in the cellular response to iron deficiency is well characterized. Here we examine the potential role for microRNA-mediated regulation in the coordinated response to cellular iron deficiency.</p> / Dissertation
14

Post-transcriptional regulation of gene expression in response to iron deficiency in Saccharomyces cerevisiae

Vergara, Sandra Viviana January 2010 (has links)
<p>The ability of iron (Fe) to easily transition between two valence states makes it a preferred co-factor for innumerable biochemical reactions, ranging from cellular energy production, to oxygen transport, to DNA synthesis and chromatin modification. While Fe is highly abundant on the crust of the earth, its insolubility at neutral pH limits its bioavailability. As a consequence, organisms have evolved sophisticated mechanisms of adaptation to conditions of scarce Fe availability. </p> <p>Studies in the baker's yeast Saccharomyces cerevisiae have shed light into the cellular mechanisms by which cells respond to limited Fe-availability. In response to Fe-deficiency, the transcription factors Aft1 and Aft2 activate a group of genes collectively known as the Fe-regulon. Genes in this group encode proteins involved in the high-affinity plasma membrane Fe-transport and siderophore uptake systems, as well as Fe-mobilization from intracellular stores and heme re-utilization. Concomitant with the up-regulation of the Fe-regulon, a large number of mRNAs encoding Fe-dependent proteins as well as proteins involved in many Fe-dependent processes are markedly down regulated. Thus, in response to low Fe-levels the cell activates the Fe-uptake and mobilization systems, while down-regulating mRNAs involved in highly Fe-demanding processes leading to a genome-wide remodeling of cellular metabolism that permits the funneling of the limiting Fe to essential Fe-dependent reactions. </p> <p>The Fe-regulon member Cth2 belongs to a family of mRNA-binding proteins characterized by an RNA-binding motif consisting of two tandem zinc-fingers of the CX8CX5CX3H type. Members of this family recognize and bind specific AU-rich elements (AREs) located in the 3'untranslated region (3'UTRs) of select groups of mRNAs, thereby promoting their rapid degradation. In response to Fe-limitation, Cth2 binds ARE sequences within the 3'UTRs of many mRNAs encoding proteins involved in Fe-homeostasis and Fe-dependent processes, thereby accelerating their rate of decay. </p> <p>Work described in this dissertation demonstrates that the Cth2 homolog, Cth1, is a bona fide member of the Fe-regulon, binds ARE-sequences within the 3'UTRs of select mRNAs and promotes their decay. Cth1 and Cth2 appear to be only partially redundant; Cth1 preferentially targets mRNAs encoding mitochondrial proteins, while Cth2 promotes the degradation of most of Cth1 targets in addition to other mitochondrial and non-mitochondrial Fe-requiring processes. The coordinated activity of Cth1 and Cth2 results in dramatic changes in glucose metabolism. In addition, experiments described in this dissertation indicate that the CTH1 and CTH2 transcripts are themselves subject to ARE-mediated regulation by the Cth1 and Cth2 proteins, creating an auto- and trans-regulatory circuit responsible for differences in their expression. Finally, work described here demonstrates that Cth2 is a nucleocytoplasmic shuttling protein and that shuttling is important for the early determination of cytosolic mRNA-fate.</p> / Dissertation
15

The Role of MicroRNA-155 in Human Breast Cancer

Kong, William 20 July 2010 (has links)
Recent statistics reveal breast cancer as the most common cancer among women and accounts for approximately 41,000 mortalities per year. In diagnosis, features such as stage, grade, lymph node metastasis are important prognostic indicators that help guide physicians and oncologist towards optimal patient care. Presence of established pathological markers such as ER, PR, and Her2/neu status would indicate ideal adjuvant therapy situation. Although treatment of these types of breast cancer is well established, cancer that lack all three receptors, “triple negatives” or “basal like” do not respond to adjuvant therapy and are considered more aggressive in that patients tend to recur early and experience visceral metastasis. Although scientists have uncovered numerous molecular biology mechanisms in search of an understanding in cancer, leading to development of fields such as apoptosis or growth pathways; cell cycle; angiogenesis; metastasis; and more recently cancer stem cells, much work remains as cancer is still not eradicated. MicroRNAs (miRNAs) are post transcriptional regulators of gene expression. Their discovery and functional understanding have only been uncovered in the past ten years. Long pri-miRNAs are transcribed from the genome and processed into premiRNAs by Dicer; and then into short single stranded mature miRNAs complexed with Argonaute proteins to inhibit protein translation. The first link of miRNAs to cancer was made only relatively recently, but the field has expanded exponentially since. TGF- β induced Epithelial to Mesenchymal Transition model in Normal Mouse Mammary Gland Epithelia Cells (NMuMG) is a commonly used model to dissect the molecular processes of breast cancer metastasis. Using miRNA microarray, we demonstrated miR-155 was upregulated along with alterations of other miRNAs. This observation was validated with Northern and qRT-PCR analysis. Promoter and ChIP analysis revealed TGF- β activated the Smad4 transcriptional complex to induce the expression of miR-155. The reduction of RhoA protein levels by ubiquitination has been described to be a critical step during EMT, and we showed miR-155 down regulates RhoA proteins without degrading its mRNA levels; therefore, preventing de novo synthesis of RhoA proteins in the course of EMT. The interaction between miR-155 and RhoA’s 3’UTR was confirmed by reporter assays. In summary, we reported the importance of miR-155 during TGF β induced EMT in NMuMG cells. FOXO3a is a well studied tumor suppressor transcriptional factor and resides in the nucleus to transcribe pro-apoptotic genes such as Bim, or p27 in the active state. During conditions when cells are signaled to grow and divide, it is phosphorylated by oncogenes such as AKT or IKK β, becomes inactivated and translocates into the cytoplasm. We have shown for the first time that FOXO3a activity is also regulated by miRNAs, specifically miR-155. Western and Northern analysis revealed a correlation between FOXO3a protein and mature miR-155 RNA levels in breast cancer cell lines along with breast tumor and normal tissues. Specifically, miR-155 expression is low in BT474 and high in HS578T, and inversely correlates with endogenous FOXO3a protein levels. Overexpression of miR-155 decreased endogenous FOXO3a protein and knockdown of miR-155 HS578T rescued its expression. Reporter assay experiments validated the interaction between miR-155 and FOXO3a 3’UTR. More importantly, overexpression of miR-155 in BT474 protected the cells from apoptosis induced by drugs while knockdown of miR-155 in HS578T initiated cell death even in the absence of drugs. In summary, we have shown the importance of miR-155 in chemosensitivity by targeting FOXO3a in breast cancer. MiR-155 has been previously shown up-regulated in multiple types of malignancies, including breast cancer. In addition, miR-155 expression was reported to correlate very strongly to survival in lung and pancreatic cancer. We validated by qRTPCR and Northern analysis that miR-155 expression is detected only in breast tumors and not normal breast tissue. In situ hybridization of breast cancer tissue microarrays revealed similar results. In light of previous studies that showed a correlation between miR-155 and survival in lung and pancreatic cancers, we performed an X-tile analysis to determine an optimal cut point for miR-155 level in our breast cancer sample population that would correlate to ten years overall survival. Verification using Kaplan-Meier validated a cut point at 90.14 to significantly correlate to overall survival (P=0.007). In addition, Chi-square analysis revealed miR-155 expression to correlate with high tumor stage, grade and lymph node metastasis. However, miR-155 expression did not correspond to ER, PR, or HER2/neu status, but this is hardly surprising since computational analysis does not predict miR-155 to target these genes. In summary, we have shown deviant expression of miR-155 in breast cancer. Due to its correlation with overall survival; higher grade and stage; lymph node metastasis, and triple negative subtype, miR-155 may prove to be a valuable prognostic marker and therapeutic target for breast cancer intervention.
16

Coordinated Post-transcriptional Regulation by MicroRNAs and RNA- binding Proteins

Sekikawa, Akiko 27 November 2013 (has links)
Both microRNAs (miRNAs) and RNA-binding proteins (RBPs) regulate post- transcriptional events, but the post-transcriptional contribution to the global mammalian transcriptomes is still not well understood. In this study we study the synergistic interaction between microRNAs that inhibit gene production, and a special RBP, HuR, that positively regulates mRNA stability. We examined their relationship in terms of spatial, conservational and expressional perspective. We show comprehensive mapping of HuR binding sites by combination of its structural and sequential preferences; and cross-platform normalization method within a process of refining miRNA and HuR binding site mapping. Finally, we observed co-evolution of miRNA and HuR binding sites by looking at their proximity and conservation levels. Collectively, our data suggest that mammalian microRNAs and HuR, with seemingly opposing regulatory effects, cooperatively regulate their mutual targets.
17

Coordinated Post-transcriptional Regulation by MicroRNAs and RNA- binding Proteins

Sekikawa, Akiko 27 November 2013 (has links)
Both microRNAs (miRNAs) and RNA-binding proteins (RBPs) regulate post- transcriptional events, but the post-transcriptional contribution to the global mammalian transcriptomes is still not well understood. In this study we study the synergistic interaction between microRNAs that inhibit gene production, and a special RBP, HuR, that positively regulates mRNA stability. We examined their relationship in terms of spatial, conservational and expressional perspective. We show comprehensive mapping of HuR binding sites by combination of its structural and sequential preferences; and cross-platform normalization method within a process of refining miRNA and HuR binding site mapping. Finally, we observed co-evolution of miRNA and HuR binding sites by looking at their proximity and conservation levels. Collectively, our data suggest that mammalian microRNAs and HuR, with seemingly opposing regulatory effects, cooperatively regulate their mutual targets.
18

Examination of the cellular stress response and post-transcriptional regulation of RNA during Ebola virus infection

Nelson, Emily Victoria 15 June 2016 (has links)
Ebola virus (EBOV) causes severe disease in humans characterized by high case fatality rates and significant immune dysfunction. A hallmark of EBOV infection is the formation of viral inclusions in the cytoplasm of infected cells. These inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV gene expression and genome replication, little is known about their role in the host response to infection. The cellular stress response is an antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Related to this response is the post-transcriptional regulation of RNA mediated by stability elements called AU-rich elements (AREs) and their associated binding proteins (ARE-BPs), many of which are found in SGs. Because these processes have antiviral implications, many viruses have evolved strategies to interfere with SG formation, or appropriate ARE-BPs to benefit viral replication. However, it is unknown if EBOV interacts with these cellular systems. Here, we show that SG proteins were sequestered within EBOV inclusions where they formed distinct granules that colocalized with viral RNA. The inclusion-bound aggregates were not canonical SGs, and did not lead to translational arrest in infected cells. EBOV did not induce cytoplasmic SGs at any time post infection, but was unable to overcome SG formation induced by additional stressors. Despite the sequestration of SG proteins, canonical SGs did not form within inclusions. At high levels of expression, viral protein 35 (VP35), the viral polymerase co-factor that also mediates various immune evasion functions, disrupted SGs formation independently of eIF2α phosphorylation. Finally, we found that the cellular ARE-BP tristetraprolin (TTP) specifically targeted the 3’untranslated region (UTR) of the viral nucleoprotein (NP) mRNA and promoted its degradation. Interestingly, TTP was not found within viral inclusions, leading us to speculate that inclusions might serve to prevent viral RNA from encountering TTP. These results indicate that EBOV interacts with the cellular stress response and associated RNA regulatory proteins in ways that promote viral replication.
19

LRRK2 Phosphorylates HuD to Affect the Post-Transcriptional Regulation of Parkinson's Disease-Linked mRNA Targets

Pastic, Alyssa 19 December 2018 (has links)
Parkinson's Disease (PD) is a late-onset neurodegenerative disease characterized by progressive motor dysfunction caused by a loss of dopaminergic neurons for which there is no known cure. Among the most common genetic causes of PD are mutations in the leucine-rich repeat kinase 2 gene (LRRK2), encoding a multi-domain protein with kinase activity. The LRRK2 G2019S mutation causes hyperactivity of the kinase domain and is the most frequent LRRK2 mutation in patients with familial PD, though its role in PD pathology remains unclear. Preliminary data from the lab of our collaborator, Dr. David Park, demonstrated through a genetic screen in Drosophila melanogaster that the deletion of rbp9 encoding an RNA-binding protein prevented pathology induced by PD-relevant mutations in the LRRK2 kinase domain. The neuronal homolog of RBP9 in humans is HuD, a member of the Hu family of RNA-binding proteins that regulates the expression of many transcripts involved in neuronal development, plasticity, and survival. In addition, HuD has been shown to modify the age-at-onset or risk of developing PD. Here, we studied the effect of LRRK2 on the post-transcriptional regulation of mRNAs bound by HuD in the context of PD. Our findings showed that HuD is a substrate for LRRK2 phosphorylation in vitro, and that LRRK2 G2019S hyperphosphorylates HuD. We demonstrated that LRRK2 kinase activity is required for the binding of several transcripts by HuD that encode PD-relevant proteins such as α-synuclein and neuronal survival factor BDNF. Our findings in human neuroblastoma cells indicated that LRRK2 regulates the protein levels of HuD mRNA targets α-synuclein and BDNF in a mechanism that can by modified by HuD. Finally, we showed that the combination of HuD knockout with LRRK2 G2019S expression in mice rescues aberrant expression of HuD targets in mice with only the LRRK2 G2019S mutation or the knockout of HuD alone. Together, our findings demonstrate that LRRK2 affects the post-transcriptional regulation of HuD-bound mRNAs, and suggest the use of HuD as a potential therapeutic target in patients with PD caused by the LRRK2 G2019S mutation.
20

Expressional divergence of insect GOX genes: From specialist to generalist glucose oxidase

Yang, Lihong, Wang, Xiongya, Bai, Sufen, Li, Xin, Gu, Shaohua, Wang, Chen-Zhu, Li, Xianchun 07 1900 (has links)
Insect herbivores often secrete glucose oxidase (GOX) onto plants to counteract plant defenses and potential pathogens. Whether generalist herbivores always have significantly higher GOX activities than their specialist counterparts at any comparable stage or conditions and how this is realized remain unknown. To address these two general questions, we subjected larvae of a pair of sister species differed mainly in host range, the generalist Helicoverpa armigera and its specialist counterpart Helicoverpa assulta, to the same sets of stage, protein to digestible carbohydrate (P:C) ratio, allelochemical or host plant treatments for simultaneous analyses of GOX transcripts and activities in their labial glands. GOX activity and transcripts are upregulated concurrently with food ingestion and body growth, downregulated with stopping ingestion and wandering for pupation in both species. The three tested host plants upregulated GOX transcripts, and to a lesser extent, GOX activity in both species. There were significant differences in both GOX transcripts and activity elicited by allelochemicals, but only in GOX transcripts by P:C ratios in both species. GOX activities were higher in H. armigera than H. assulta in all the comparable treatments, but GOX transcripts were significantly higher either in generalists or in specialists, depending on the developmental stages, host plants, P:C ratio and allelochemicals they encounter. These data indicate that the greater GOX activity in generalist herbivores is not achieved by greater transcription rate, but by greater transcript stability, greater translation rate, better enzyme stability and/or their combination.

Page generated in 0.1676 seconds