• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Knowing what you don't know : roles for confidence measures in automatic speech recognition

Williams, David Arthur Gethin January 1999 (has links)
No description available.
2

Bayesovský přístup v manažerském rozhodování / Bayesian Approach in Managerial Decision Making

Mošna, Ondřej January 2013 (has links)
This diploma thesis is about Bayesian approach in managerial decision making process. The goal is not only to quantify the principals used by managers during decision making in real situations but also the application of Bayesian methods on given examples. The mentioned principals are the probability updates after gaining a new information. In thesis are also described the computer systems which work with Bayesian calculations and a chosen system is described in detail. In a practical part of this thesis is demonstrated the use of Bayesian principals in real decision making situations -- there is demonstrated the use of Bayesian games, Bayesian networks (both classic and dynamic) and risk decision making process.
3

Multiple testing using the posterior probability of half-space: application to gene expression data.

Labbe, Aurelie January 2005 (has links)
We consider the problem of testing the equality of two sample means, when the number of tests performed is large. Applying this problem to the context of gene expression data, our goal is to detect a set of genes differentially expressed under two treatments or two biological conditions. A null hypothesis of no difference in the gene expression under the two conditions is constructed. Since such a hypothesis is tested for each gene, it follows that thousands of tests are performed simultaneously, and multiple testing issues then arise. The aim of our research is to make a connection between Bayesian analysis and frequentist theory in the context of multiple comparisons by deriving some properties shared by both p-values and posterior probabilities. The ultimate goal of this work is to use the posterior probability of the one-sided alternative hypothesis (or equivalently, posterior probability of the half-space) in the same spirit as a p-value. We show for instance that such a Bayesian probability can be used as an input in some standard multiple testing procedures controlling for the False Discovery rate.
4

Multiple testing using the posterior probability of half-space: application to gene expression data.

Labbe, Aurelie January 2005 (has links)
We consider the problem of testing the equality of two sample means, when the number of tests performed is large. Applying this problem to the context of gene expression data, our goal is to detect a set of genes differentially expressed under two treatments or two biological conditions. A null hypothesis of no difference in the gene expression under the two conditions is constructed. Since such a hypothesis is tested for each gene, it follows that thousands of tests are performed simultaneously, and multiple testing issues then arise. The aim of our research is to make a connection between Bayesian analysis and frequentist theory in the context of multiple comparisons by deriving some properties shared by both p-values and posterior probabilities. The ultimate goal of this work is to use the posterior probability of the one-sided alternative hypothesis (or equivalently, posterior probability of the half-space) in the same spirit as a p-value. We show for instance that such a Bayesian probability can be used as an input in some standard multiple testing procedures controlling for the False Discovery rate.
5

A Local Likelihood Active Contour Model for Medical Image Segmentation

Zhang, Jie 30 September 2007 (has links)
No description available.
6

Bayesian Model Selection for Poisson and Related Models

Guo, Yixuan 19 October 2015 (has links)
No description available.
7

Chemical Analysis, Databasing, and Statistical Analysis of Smokeless Powders for Forensic Application

Dennis, Dana-Marie 01 January 2015 (has links)
Smokeless powders are a set of energetic materials, known as low explosives, which are typically utilized for reloading ammunition. There are three types which differ in their primary energetic materials; where single base powders contain nitrocellulose as their primary energetic material, double and triple base powders contain nitroglycerin in addition to nitrocellulose, and triple base powders also contain nitroguanidine. Additional organic compounds, while not proprietary to specific manufacturers, are added to the powders in varied ratios during the manufacturing process to optimize the ballistic performance of the powders. The additional compounds function as stabilizers, plasticizers, flash suppressants, deterrents, and opacifiers. Of the three smokeless powder types, single and double base powders are commercially available, and have been heavily utilized in the manufacture of improvised explosive devices. Forensic smokeless powder samples are currently analyzed using multiple analytical techniques. Combined microscopic, macroscopic, and instrumental techniques are used to evaluate the sample, and the information obtained is used to generate a list of potential distributors. Gas chromatography – mass spectrometry (GC-MS) is arguably the most useful of the instrumental techniques since it distinguishes single and double base powders, and provides additional information about the relative ratios of all the analytes present in the sample. However, forensic smokeless powder samples are still limited to being classified as either single or double base powders, based on the absence or presence of nitroglycerin, respectively. In this work, the goal was to develop statistically valid classes, beyond the single and double base designations, based on multiple organic compounds which are commonly encountered in commercial smokeless powders. Several chemometric techniques were applied to smokeless powder GC-MS data for determination of the classes, and for assignment of test samples to these novel classes. The total ion spectrum (TIS), which is calculated from the GC-MS data for each sample, is obtained by summing the intensities for each mass-to-charge (m/z) ratio across the entire chromatographic profile. A TIS matrix comprising data for 726 smokeless powder samples was subject to agglomerative hierarchical cluster (AHC) analysis, and six distinct classes were identified. Within each class, a single m/z ratio had the highest intensity for the majority of samples, though the m/z ratio was not always unique to the specific class. Based on these observations, a new classification method known as the Intense Ion Rule (IIR) was developed and used for the assignment of test samples to the AHC designated classes. Discriminant models were developed for assignment of test samples to the AHC designated classes using k-Nearest Neighbors (kNN) and linear and quadratic discriminant analyses (LDA and QDA, respectively). Each of the models were optimized using leave-one-out (LOO) and leave-group-out (LGO) cross-validation, and the performance of the models was evaluated by calculating correct classification rates for assignment of the cross-validation (CV) samples to the AHC designated classes. The optimized models were utilized to assign test samples to the AHC designated classes. Overall, the QDA LGO model achieved the highest correct classification rates for assignment of both the CV samples and the test samples to the AHC designated classes. In forensic application, the goal of an explosives analyst is to ascertain the manufacturer of a smokeless powder sample. In addition, knowledge about the probability of a forensic sample being produced by a specific manufacturer could potentially decrease the time invested by an analyst during investigation by providing a shorter list of potential manufacturers. In this work, Bayes* Theorem and Bayesian Networks were investigated as an additional tool to be utilized in forensic casework. Bayesian Networks were generated and used to calculate posterior probabilities of a test sample belonging to specific manufacturers. The networks were designed to include manufacturer controlled powder characteristics such as shape, color, and dimension; as well as, the relative intensities of the class associated ions determined from cluster analysis. Samples were predicted to belong to a manufacturer based on the highest posterior probability. Overall percent correct rates were determined by calculating the percentage of correct predictions; that is, where the known and predicted manufacturer were the same. The initial overall percent correct rate was 66%. The dimensions of the smokeless powders were added to the network as average diameter and average length nodes. Addition of average diameter and length resulted in an overall prediction rate of 70%.
8

Estimating Per-pixel Classification Confidence of Remote Sensing Images

Jiang, Shiguo 19 December 2012 (has links)
No description available.

Page generated in 0.1251 seconds