• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

DESIGNING SUSTAINABLE AND SAFER ADVANCED BATTERIES THROUGH POLYMER TAILORING

Daniel A Gribble (16632606) 01 August 2023 (has links)
<p>As the future of energy looks increasingly electrified, the development of safe and sustainable battery technologies has never been more relevant. This is particularly critical for applications in stationary energy storage and transportation, where batteries must be produced and stored at large scale. Sustainability is necessary to meet the volume of demand at reasonable cost without straining resources. Safety is also paramount since fires can easily spread from one cell to the next and result in catastrophe when batteries are stored in proximity for large power banks or EVs. The focus of this thesis is thus to design and engineer materials for rechargeable batteries, which improve safety and sustainability while still enhancing the electrochemical performance. Towards this end, polymers play a central role throughout this thesis work due to their tunable chemical and physical properties.</p>
12

Covalent Organic Frameworks: Design, Synthesis and Applications

Wolfson, Eric R. January 2021 (has links)
No description available.
13

Investigating the Energy Storage Capabilities and Thermal Conductivities of Covalent Organic Frameworks

Moscarello, Erica Mary Nora 23 September 2022 (has links)
No description available.
14

K+ channels : gating mechanisms and lipid interactions

Schmidt, Matthias Rene January 2013 (has links)
Computational methods, including homology modelling, in-silico dockings, and molecular dynamics simulations have been used to study the functional dynamics and interactions of K<sup>+</sup> channels. Molecular models were built of the inwardly rectifying K<sup>+</sup> channel Kir2.2, the bacterial homolog K<sup>+</sup> channel KirBac3.1, and the twin pore (K2P) K<sup>+</sup> channels TREK-1 and TRESK. To investigate the electrostatic energy profile of K<sup>+</sup> permeating through these homology models, continuum electrostatic calculations were performed. The primary mechanism of KirBac3.1 gating is believed to involve an opening at the helix bundle crossing (HBC). However, simulations of Kir channels have not yet revealed opening at the HBC. Here, in simulations of the new KirBac3.1-S129R X-ray crystal structure, in which the HBC was trapped open by the S129R mutation in the inner pore-lining helix (TM2), the HBC was found to exhibit considerable mobility. In a simulation of the new KirBac3.1-S129R-S205L double mutant structure, if the S129R and the S205L mutations were converted back to the wild-type serine, the HBC would close faster than in the simulations of the KirBac3.1-S129R single mutant structure. The double mutant structure KirBac3.1-S129R-S205L therefore likely represents a higher-energy state than the single mutant KirBac3.1-S129R structure, and these simulations indicate a staged pathway of gating in KirBac channels. Molecular modelling and MD simulations of the Kir2.2 channel structure demonstrated that the HBC would tend to open if the C-linker between the transmembrane and cytoplasmic domain was modelled helical. The electrostatic energy barrier for K<sup>+</sup> permeation at the helix bundle crossing was found to be sensitive to subtle structural changes in the C-linker. Charge neutralization or charge reversal of the PIP2-binding residue R186 on the C-linker decreased the electrostatic barrier for K<sup>+</sup> permeation through the HBC, suggesting an electrostatic contribution to the PIP2-dependent gating mechanism. Multi-scale simulations determined the PIP2 binding site in Kir2.2, in good agreement with crystallographic predictions. A TREK-1 homology model was built, based on the TRAAK structure. Two PIP2 binding sites were found in this TREK-1 model, at the C-terminal end, in line with existing functional data, and between transmembrane helices TM2 and TM3. The TM2-TM3 site is in reasonably good agreement with electron density attributed to an acyl tail in a recently deposited TREK-2 structure.
15

Computational Analysis of Molecular Recognition Involving the Ribosome and a Voltage Gated K+ Channel

Andér, Martin January 2009 (has links)
Over the last few decades, computer simulation techniques have been established as an essential tool for understanding biochemical processes. This thesis deals mainly with the application of free energy calculations to ribosomal complexes and a cardiac ion channel. The linear interaction energy (LIE) method is used to explore the energetic properties of the essential process of codon–anticodon recognition on the ribosome. The calculations show the structural and energetic consequences and effects of first, second, and third position mismatches in the ribosomal decoding center. Recognition of stop codons by ribosomal termination complexes is fundamentally different from sense codon recognition. Free energy perturbation simulations are used to study the detailed energetics of stop codon recognition by the bacterial ribosomal release factors RF1 and RF2. The calculations explain the vastly different responses to third codon position A to G substitutions by RF1 and RF2. Also, previously unknown highly specific water interactions are identified. The GGQ loop of ribosomal RFs is essential for its hydrolytic activity and contains a universally methylated glutamine residue. The structural effect of this methylation is investigated. The results strongly suggest that the methylation has no effect on the intrinsic conformation of the GGQ loop, and, thus, that its sole purpose is to enhance interactions in the ribosomal termination complex. A first microscopic, atomic level, analysis of blocker binding to the pharmaceutically interesting potassium ion channel Kv1.5 is presented. A previously unknown uniform binding mode is identified, and experimental binding data is accurately reproduced. Furthermore, problems associated with pharmacophore models based on minimized gas phase ligand conformations are highlighted. Generalized Born and Poisson–Boltzmann continuum models are incorporated into the LIE method to enable implicit treatment of solvent, in an effort to improve speed and convergence. The methods are evaluated and validated using a set of plasmepsin II inhibitors.
16

Multifunctional Molecule-Grafted V₂C MXene as High-Kinetics Potassium-Ion-Intercalation Anodes for Dual-Ion Energy Storage Devices

Sabaghi, Davood, Polčák, Josef, Yang, Hyejung, Li, Xiaodong, Morag, Ahiud, Li, Dongqi, Shaygan Nia, Ali, Khosravi H, Saman, Šikola, Tomáš, Feng, Xinliang, Yu, Minghao 23 May 2024 (has links)
Constructing dual-ion energy storage devices using anion-intercalation graphite cathodes offers the unique opportunity to simultaneously achieve high energy density and output power density. However, a critical challenge remains in the lack of proper anodes that match with graphite cathodes, particularly in sustainable electrolyte systems using abundant potassium. Here, a surface grafting approach utilizing multifunctional azobenzene sulfonic acid is reported, which transforms V2C MXene into a high-kinetics K+-intercalation anode (denoted ASA-V2C) for dual-ion energy storage devices. Importantly, the grafted azobenzene sulfonic acid offers extra K+-storage centers and fast K+-hopping sites, while concurrently acting as a buffer between V2C layers to mitigate the structural distortion during K+ intercalation/de-intercalation. These functionalities enable the V2C electrode with significantly enhanced specific capacity (173.9 mAh g−1 vs 121.5 mAh g−1 at 0.05 A g−1), rate capability (43.1% vs 12.0% at 20 A g−1), and cycling stability (80.3% vs 45.2% after 900 cycles at 0.05 A g−1). When coupled with an anion-intercalation graphite cathode, the ASA-V2C anode demonstrates its potential in a dual-ion energy storage device. Notably, the device depicts a maximum energy density of 175 Wh kg−1 and a supercapacitor-comparable power density of 6.5 kW kg−1, outperforming recently reported Li+-, Na+-, and K+-based dual-ion devices.

Page generated in 0.0391 seconds