• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 9
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 21
  • 19
  • 17
  • 17
  • 15
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Performance Enhancement of MIMO Transmission Techniques with Limited Number of Receive Antennas / 受信アンテナ数制約下でのMIMO伝送技術の特性改善

Ilmiawan, Shubhi 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20741号 / 情博第655号 / 新制||情||113(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 原田 博司, 教授 守倉 正博, 教授 大木 英司 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
42

Radio Resource Management in Wireless Networks with Multicast Transmissions

Meshgi, Hadi 06 1900 (has links)
With the increasing demand for wireless communications, radio resource management (RRM) plays an important role in future wireless networks in order to provide higher data rates and better quality of services, given the limited amount of available radio resources. Although some specific features of wireless communication networks cause challenges to effective and efficient RRM, they bring opportunities that help improv- ing network performance and resource utilization. In this thesis, we focus on RRM issues related to the broadcast/multicast nature in wireless communication networks. The work is divided into two parts. In the first part, we exploit how to take advantage of the broadcast nature of wire- less transmissions in RRM by opportunistically applying two-way relaying (or network coding) and traditional one-way relaying. Different objectives are considered, includ- ing maximizing total packet transmission throughput (Chapter 2), minimizing costs related to transmission power and delay (Chapter 3), and minimizing packet transmis- sion delay subject to maximum and average transmission power limits (Chapter 4). While designing these scheduling schemes, the random traffic and channel conditions are also taken into consideration. Our results show that the proposed opportunis- tic scheduling schemes can indeed take good advantage of the broadcast feature at the relay nodes and achieve much higher throughput and, in some scenarios, provide close-to-optimum QoS performance. The second part (Chapter 5) of the thesis deals with the issue of efficient resource management in multicast communications, where we study channel sharing and power allocations for multicast device-to-divice (D2D) communication groups underlaying a cellular network. In such a scenario, D2D multicasting together with the mutual inter- ference between cellular and D2D communications, makes the interference conditions and power allocations a very complicated issue. Different approaches are proposed that allow each D2D group to share the cellular channels and allocate transmission power to each D2D and cellular transmitter, so that the sum throughput of D2D and cellular users is maximized. Our results indicate that it is possible to achieve close-to-optimum throughput performance in such a network. / Dissertation / Doctor of Philosophy (PhD)
43

Frequency Generalized MC-CDMA Systems and Performance over Multiband Channels and with Multiple Level Orthogonal (MLO) Codes

Zhang, Jingtao January 2010 (has links)
No description available.
44

Node Selection, Synchronization and Power Allocation in Cooperative Wireless Networks

Baidas, Mohammed Wael 23 April 2012 (has links)
Recently, there has been an increasing demand for reliable, robust and high data rate communication systems that can counteract the limitations imposed by the scarcity of two fundamental resources for communications: bandwidth and power. In turn, cooperative communications has emerged as a new communication paradigm in which network nodes share their antennas and transmission resources for distributed data exchange and processing. Recent studies have shown that cooperative communications can achieve significant performance gains in terms of signal reliability, coverage area, and power savings when compared with conventional communication schemes. However, the merits of cooperative communications can only be exploited with efficient resource allocation in terms of bandwidth utilization and power control. Additionally, the limited network resources in wireless environments can lead rational network nodes to be selfish and aim at maximizing their own benefits. Therefore, assuming fully cooperative behaviors such as unconditionally sharing of one's resources to relay for other nodes is unjustified. On the other hand, a particular network node may try to utilize resources from other nodes and also share its own resources so as to improve its own performance, which in turn may prompt other nodes to behave similarly and thus promote cooperation. This dissertation aims to answer the following three questions: ``How can bandwidth-efficient multinode cooperative communications be achieved?'', ``How can optimal power allocation be achieved in a distributed fashion?'', and finally, ``How can network nodes dynamically interact with each other so as to promote cooperation?''. In turn, this dissertation focuses on three main problems of cooperation in ad-hoc wireless networks: (i) optimal node selection in network-coded cooperative communications, (ii) auction-based distributed power allocation in single- and multi-relay cooperative networks, and finally (iii) coalitional game-theoretic analysis and modeling of the dynamic interactions among the network nodes and their coalition formations. Bi-directional relay networks are first studied in a scenario where two source nodes are communicating with each other via a set of intermediate relay nodes. The symbol error rate performance and achievable cooperative diversity orders are studied. Additionally, the effect of timing synchronization errors on the symbol error rate performance is investigated. Moreover, a sum-of-rates maximizing optimal power allocation is proposed. Relay selection is also proposed to improve the total achievable rate and mitigate the effect of timing synchronization errors. Multinode cooperative communications are then studied through the novel concept of many-to-many space-time network coding. The symbol error rate performance under perfect and imperfect timing synchronization and channel state information is theoretically analyzed and the optimal power allocation that maximizes the total network rate is derived. Optimal node selection is also proposed to fully exploit cooperative diversity and mitigate timing offsets and channel estimation errors. Further, this dissertation investigates distributed power allocation for single-relay cooperative networks. The distributed power allocation algorithm is conceived as an ascending-clock auction where multiple source nodes submit their power demands based on an announced relay price and are efficiently allocated cooperative transmit power. It is analytically and numerically shown that the proposed ascending-clock auction-based distributed algorithm leads to efficient power allocation, enforces truth-telling, and maximizes the social welfare. A distributed ascending-clock auction-based power allocation algorithm is also proposed for multi-relay cooperative networks. The proposed algorithm is shown to converge to the unique Walrasian Equilibrium allocation which maximizes the social welfare when source nodes truthfully report their cooperative power demands. The proposed algorithm achieves the same performance as could be achieved by centralized control while eliminating the need for complete channel state information and signaling overheads. Finally, the last part of the dissertation studies altruistic coalition formation and stability in cooperative wireless networks. Specifically, the aim is to study the interaction between network nodes and design a distributed coalition formation algorithm so as to promote cooperation while accounting for cooperation costs. This involves an analysis of coalitions' merge-and-split processes as well as the impact of different cooperative power allocation criteria and mobility on coalition formation and stability. A comparison with centralized power allocation and coalition formation is also considered, where the proposed distributed algorithm is shown to provide reasonable tradeoff between network sum-rate and computational complexity. / Ph. D.
45

Resource allocation techniques for non-orthogonal multiple access systems / Techniques d’allocation de ressources pour les systèmes à accès multiple non orthogonal

Hojeij, Marie Rita 30 May 2018 (has links)
Avec l’émergence rapide des applications Internet, il est prévu que le trafic mobile mondial augmente de huit fois entre fin 2018 et 2022. En même temps, les futurs systèmes de communication se devront aussi d’améliorer l'efficacité spectrale des transmissions, le temps de latence et l’équité entre utilisateurs. À cette fin, une technique d’accès multiple non orthogonal (NOMA) a été récemment proposée comme un candidat prometteur pour les futurs accès radio. La technique NOMA est basée sur un nouveau domaine de multiplexage, le domaine des puissances. Elle permet la cohabitation de deux ou plusieurs utilisateurs par sous-porteuse ou sous-bande de fréquence. Cette thèse aborde plusieurs problèmes liés à l’allocation de ressources basée sur NOMA afin d'améliorer les performances du réseau en termes d'efficacité spectrale, de débit et/ou d’équité entre utilisateurs. Dans ce sens, des solutions théoriques et algorithmiques sont proposées et des résultats numériques sont obtenus afin de valider les solutions et de vérifier la capacité des algorithmes proposés à atteindre des performances optimales ou sous-optimales. Après une étude bibliographique des différentes techniques d’allocation de ressources présentée dans le premier chapitre, on propose dans le deuxième chapitre plusieurs stratégies d’allocation de ressource où une réduction de la bande utilisée par les utilisateurs est ciblée. Les résultats de simulation montrent que les stratégies proposées améliorent à la fois l’efficacité spectrale et le débit total des utilisateurs par rapport aux systèmes basés uniquement sur des techniques d’accès orthogonales. Quant au troisième chapitre, il étudie la performance du Proportional Fairness (PF) Scheduler tout en considérant que la bande passante est disponible en totalité. Dans ce sens, plusieurs améliorations basées sur le PF sont proposées, qui offrent au système NOMA des avantages en termes de débit, d’équité entre utilisateurs et de qualité de service. Dans le quatrième chapitre, nous proposons plusieurs techniques d’allocation de ressources qui donnent aux utilisateurs la possibilité de favoriser le débit par rapport à l’équité entre utilisateurs et vice versa. Dans le dernier chapitre, différentes techniques permettant une transmission hybride broadcast/broadband sur la même bande de fréquence sont proposées et comparées à l’état de l’art. / With the proliferation of Internet applications, between the end of 2016 and 2022, total mobile traffic is expected to increase by 8 times. At the same time, communications networks are required to further enhance system efficiency, latency, and user fairness. To this end, non-orthogonal multiple access (NOMA) has recently emerged as a promising candidate for future radio access. By exploiting an additional multiplexing domain, the power domain, NOMA allows the cohabitation of two or more users per subcarrier, based on the principle of signal superposition. This dissertation addresses several radio resource allocation problems in mobile communication systems, in order to improve network performance in terms of spectral efficiency, through put, or fairness. Theoretical analysis and algorithmic solutions are derived. Numerical results are obtained to validate our theoretical findings and demonstrate the algorithms ability of attaining optimal or sub-optimal solutions. To this direction, the second chapter of this thesis investigates several new strategies for the allocation of radio resources (bandwidth and transmission power) using NOMA principle, where the minimization of the total amount of used bandwidth is targeted. Extensive simulation results show that the proposed strategies for resource allocation can improve both the spectral efficiency and the cell-edge user throughput, especially when compared to schemes employing only orthogonal signaling. A context where the total bandwidth is available has also been studied, in the 3rd chapter where we investigate the performance of the proportional fairness (PF) scheduler, and we propose modifications to it, at the level of user scheduling and power allocation that show to improve the system capacity, user fairness and QoS. In the 4th chapter, we proposed new pairing metrics that allow to favor the fairness at the expense of the throughput and vice versa. The proposed metrics show enhancements at the level of system capacity, user fairness, and computational complexity. Different techniques that allow a hybrid broadcast/multicast transmission on the same frequency platform are proposed in the last chapter and compared to the state of the art.
46

Intercell Interference Management in an OFDM-based Downlink

Heyman, Jessica January 2006 (has links)
<p>Efficient radio resource management is of paramount importance for achieving the high bit rates targeted by the 3GPP for the 3GPP Long-Term Evolution. The radio air interface must be able to provide both high peak bit rates and acceptable cell-edge bit rates. This thesis therefore investigates three methods which try to combine the peak bit rate of a reuse-1 system with the cell-edge bit rate of a reuse-3 system in an OFDM-based downlink. These methods are soft frequency reuse, reuse partitioning and one variation of soft frequency reuse, reuse-1 with prioritization.</p><p>In static simulations with one user per cell and a system load of 100 percent, a Shannon capacity gain of up to 18 percent at the 10th percentile is shown with reuse partitioning compared to a reuse-1 system. This gain comes coupled with a loss of only 5 percent at the median. Soft frequency reuse is also investigated statically and shows a 13 percent gain at the 10th percentile compared to a reuse-1 system. Having a lower 10th percentile gain than reuse partitioning, it also shows a slightly smaller loss of 4 percent at the median and a much smaller loss at the 90th percentile.</p><p>Dynamic simulations with a traffic model and multiple users per cell offer a more realistic scenario and show that the proposed intercell interference management methods do not provide the same throughput gains in the dynamic case at low system loads. If interference is not an issue, interference coordination is still costly in terms of limiting bandwidth and/or decreasing the scheduling gain, but provides no significant interference reduction. At low system loads, reuse-1 is therefore the best scheme although interference coordination might prove necessary to provide edge-user throughput at high loads. For such purposes, soft frequency reuse is shown to be a potential candidate and although not investigated in a dynamic setting, reuse partitioning is believed to have similar performance. The traffic model chosen in this thesis only allows study of low system loads but at these loads, soft frequency reuse performs promisingly close to a reuse-1 system.</p>
47

Intercell Interference Management in an OFDM-based Downlink

Heyman, Jessica January 2006 (has links)
Efficient radio resource management is of paramount importance for achieving the high bit rates targeted by the 3GPP for the 3GPP Long-Term Evolution. The radio air interface must be able to provide both high peak bit rates and acceptable cell-edge bit rates. This thesis therefore investigates three methods which try to combine the peak bit rate of a reuse-1 system with the cell-edge bit rate of a reuse-3 system in an OFDM-based downlink. These methods are soft frequency reuse, reuse partitioning and one variation of soft frequency reuse, reuse-1 with prioritization. In static simulations with one user per cell and a system load of 100 percent, a Shannon capacity gain of up to 18 percent at the 10th percentile is shown with reuse partitioning compared to a reuse-1 system. This gain comes coupled with a loss of only 5 percent at the median. Soft frequency reuse is also investigated statically and shows a 13 percent gain at the 10th percentile compared to a reuse-1 system. Having a lower 10th percentile gain than reuse partitioning, it also shows a slightly smaller loss of 4 percent at the median and a much smaller loss at the 90th percentile. Dynamic simulations with a traffic model and multiple users per cell offer a more realistic scenario and show that the proposed intercell interference management methods do not provide the same throughput gains in the dynamic case at low system loads. If interference is not an issue, interference coordination is still costly in terms of limiting bandwidth and/or decreasing the scheduling gain, but provides no significant interference reduction. At low system loads, reuse-1 is therefore the best scheme although interference coordination might prove necessary to provide edge-user throughput at high loads. For such purposes, soft frequency reuse is shown to be a potential candidate and although not investigated in a dynamic setting, reuse partitioning is believed to have similar performance. The traffic model chosen in this thesis only allows study of low system loads but at these loads, soft frequency reuse performs promisingly close to a reuse-1 system.
48

Transmitter Strategies for Closed-Loop MIMO-OFDM

Sung, Joon Hyun 09 July 2004 (has links)
This thesis concerns communication across channels with multiple inputs and multiple outputs. Specifically, we consider the closed-loop scenario in which knowledge of the state of the multiple-input multiple-output (MIMO) channel is available at the transmitter. We show how this knowledge can be exploited to optimize performance, as measured by the zero-outage capacity, which is the capacity corresponding to zero outage probability. On at-fading channels, a closed-loop transmitter allocates different powers and rates to the multiple channel inputs so as to maximize zero-outage capacity. Frequency-selective fading channels call for a combination of orthogonal-frequency-division multiplexing (OFDM) and MIMO known as MIMO-OFDM. This exacerbates the allocation problem because it multiplies the number of allocation dimensions by the number of OFDM tones. Fortunately, this thesis demonstrates that simple allocations are sufficient to approach the zero-outage capacity. These simple strategies exploit the tendency for random MIMO channels to behave deterministically as the number of inputs becomes large.
49

Achievable rates for Gaussian Channels with multiple relays

Coso Sánchez, Aitor del 12 September 2008 (has links)
Los canales múltiple-entrada-múltiple-salida (MIMO) han sido ampliamente propuestos para superar los desvanecimientos aleatorios de canal en comunicaciones inalámbricas no selectivas en frecuencia. Basados en equipar tanto transmisores como receptores con múltiple antenas, sus ventajas son dobles. Por un lado, permiten al transmisor: i) concentrar la energía transmitida en una dirección-propia determinada, o ii) codificar entre antenas con el fin de superar desvanecimientos no conocidos de canal. Por otro lado, facilitan al receptor el muestreo de la señal en el dominio espacial. Esta operación, seguida por la combinación coherente de muestras, aumenta la relación señal a ruido de entrada al receptor. De esta forma, el procesado multi-antena es capaz de incrementar la capacidad (y la fiabilidad) de la transmisión en escenarios con alta dispersión.Desafortunadamente, no siempre es posible emplazar múltiples antenas en los dispositivos inalámbricos, debido a limitaciones de espacio y/o coste. Para estos casos, la manera más apropiada de explotar el procesado multi-antena es mediante retransmisión, consistente en disponer un conjunto de repetidores inalámbricos que asistan la comunicación entre un grupo de transmisores y un grupo de receptores, todos con una única antena. Con la ayuda de los repetidores, por tanto, los canales MIMO se pueden imitar de manera distribuida. Sin embargo, la capacidad exacta de las comunicaciones con repetidores (así como la manera en que este esquema funciona con respeto al MIMO equivalente) es todavía un problema no resuelto. A dicho problema dedicamos esta tesis.En particular, la presente disertación tiene como objetivo estudiar la capacidad de canales Gaussianos asistidos por múltiples repetidores paralelos. Dos repetidores se dicen paralelos si no existe conexión directa entre ellos, si bien ambos tienen conexión directa con la fuente y el destino de la comunicación. Nos centramos en el análisis de tres canales ampliamente conocidos: el canal punto-a-punto, el canal de múltiple-acceso y el canal de broadcast, y estudiamos su mejora de funcionamiento con repetidores. A lo largo de la tesis, se tomarán las siguientes hipótesis: i) operación full-duplex en los repetidores, ii) conocimiento de canal tanto en transmisión como en recepción, y iii) desvanecimiento sin memoria, e invariante en el tiempo.En primer lugar, analizamos el canal con múltiples repetidores paralelos, en el cual una única fuente se comunica con un único destino en presencia de N repetidores paralelos. Derivamos límites inferiores de la capacidad del canal por medio de las tasas de transmisión conseguibles con distintos protocolos: decodificar-y-enviar, decodificar-parcialmente-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, con un fin comparativo, proveemos un límite superior, obtenido a través del Teorema de max-flow-min-cut. Finalmente, para el número de repetidores tendiendo a infinito, presentamos las leyes de crecimiento de todas las tasas de transmisión, así como la del límite superior.A continuación, la tesis se centra en el canal de múltiple-acceso (MAC) con múltiples repetidores paralelos. El canal consiste en múltiples usuarios comunicándose simultáneamente con un único destino en presencia de N repetidores paralelos. Derivamos una cota superior de la región de capacidad de dicho canal utilizando, de nuevo, el Teorema de max-flow-min-cut, y encontramos regiones de tasas de transmisión conseguibles mediante: decodificar-y-enviar, comprimir-y-enviar, y repetición lineal. Asimismo, se analiza el valor asintótico de dichas tasas de transmisión conseguibles, asumiendo el número de usuarios creciendo sin límite. Dicho estudio nos permite intuir el impacto de la diversidad multiusuario en redes de acceso con repetidores.Finalmente, la disertación considera el canal de broadcast (BC) con múltiples repetidores paralelos. En él, una única fuente se comunica con múltiples destinos en presencia de N repetidores paralelos. Para dicho canal, derivamos tasas de transmisión conseguibles dado: i) codificación de canal tipo dirty paper en la fuente, ii) decodificar-y-enviar, comprimir-y-enviar, y repetición lineal, respectivamente, en los repetidores. Además, para repetición lineal, demostramos que la dualidad MAC-BC se cumple. Es decir, la región de tasas de transmisión conseguibles en el BC es igual a aquélla del MAC con una limitación de potencia suma. Utilizando este resultado, se derivan algoritmos de asignación óptima de recursos basados en teoría de optimización convexa. / Multiple-input-multiple-output (MIMO) channels are extensively proposed as a means to overcome the random channel impairments of frequency-flat wireless communications. Based upon placing multiple antennas at both the transmitter and receiver sides of the communication, their virtues are twofold. On the one hand, they allow the transmitter: i) to concentrate the transmitted power onto a desired eigen-direction, or ii) tocode across antennas to overcome unknown channel fading. On the other hand, they permit the receiver to sample the signal on the space domain. This operation, followed by the coherent combination of samples, increases the signal-to-noise ratio at the input of the detector. In fine, MIMO processing is able to provide large capacity (and reliability) gains within rich-scattered scenarios.Nevertheless, equipping wireless handsets with multiple antennas is not always possible or worthwhile. Mainly, due to size and cost constraints, respectively. For these cases, the most appropriate manner to exploit multi-antenna processing is by means of relaying. This consists of a set of wireless relay nodes assisting the communication between a set of single-antenna sources and a set of single-antenna destinations. With the aid of relays, indeed, MIMO channels can be mimicked in a distributed way. However, the exact channel capacity of single-antenna communications with relays (and how this scheme performs with respect to the equivalent MIMO channel) is a long-standing open problem. To it we have devoted this thesis.In particular, the present dissertation aims at studying the capacity of Gaussian channels when assisted by multiple, parallel, relays. Two relays are said to be parallel if there is no direct link between them, while both have direct link from the source and towards the destination. We focus on three well-known channels: the point-to-point channel, the multi-access channel and the broadcast channel, and study their performance improvement with relays. All over the dissertation, the following assumptions are taken: i) full-duplex operation at the relays, ii) transmit and receive channel state information available at all network nodes, and iii) time-invariant, memory-less fading.Firstly, we analyze the multiple-parallel relay channel, where a single source communicates to a single destination in the presence of N parallel relays. The capacity of the channel is lower bounded by means of the achievable rates with different relaying protocols, i.e. decode-and-forward, partial decode-and-forward, compress-and-forward and linear relaying. Likewise, a capacity upper bound is provided for comparison, derived using the max-flow-min-cut Theorem. Finally, for number of relays growing to infinity, the scaling laws of all achievable rates are presented, as well as the one of the upper bound.Next, the dissertation focusses on the multi-access channel (MAC) with multiple-parallel relays. The channel consists of multiple users simultaneously communicating to a single destination in the presence of N parallel relay nodes. We bound the capacity region of the channel using, again, the max-flow-min-cut Theorem and find achievable rate regions by means of decode-and-forward, linear relaying and compress-and-forward. In addition, we analyze the asymptotic performance of the obtained achievable sum-rates, given the number of users growing without bound. Such a study allows us to grasp the impact of multi-user diversity on access networks with relays.Finally, the dissertation considers the broadcast channel (BC) with multiple parallel relays. This consists of a single source communicating to multiple receivers in the presence of N parallel relays. For the channel, we derive achievable rate regions considering: i) dirty paper encoding at the source, and ii) decode-and-forward, linear relaying and compress-and-forward, respectively, at the relays. Moreover, for linear relaying, we prove that MAC-BC duality holds. That is, the achievable rate region of the BC is equal to that of the MAC with a sum-power constraint. Using this result, the computation of the channel's weighted sum-rate with linear relaying is notably simplified. Likewise, convex resource allocation algorithms can be derived.
50

Distributed estimation in wireless sensor networks under a semi-orthogonal multiple access technique

2014 September 1900 (has links)
This thesis is concerned with distributed estimation in a wireless sensor network (WSN) with analog transmission. For a scenario in which a large number of sensors are deployed under a limited bandwidth constraint, a semi-orthogonal multiple-access channelization (MAC) approach is proposed to provide transmission of observations from K sensors to a fusion center (FC) via N orthogonal channels, where K≥N. The proposed semi-orthogonal MAC can be implemented with either fixed sensor grouping or adaptive sensor grouping. The mean squared error (MSE) is adopted as the performance criterion and it is first studied under equal power allocation. The MSE can be expressed in terms of two indicators: the channel noise suppression capability and the observation noise suppression capability. The fixed version of the semi-orthogonal MAC is shown to have the same channel noise suppression capability and two times the observation noise suppression capability when compared to the orthogonal MAC under the same bandwidth resource. For the adaptive version, the performance improvement of the semi-orthogonal MAC over the orthogonal MAC is even more significant. In fact, the semi-orthogonal MAC with adaptive sensor grouping is shown to perform very close to that of the hybrid MAC, while requiring a much smaller amount of feedback. Another contribution of this thesis is an analysis of the behavior of the average MSE in terms of the number of sensors, namely the scaling law, under equal power allocation. It is shown that the proposed semi-orthogonal MAC with adaptive sensor grouping can achieve the optimal scaling law of the analog WSN studied in this thesis. Finally, improved power allocations for the proposed semi-orthogonal MAC are investigated. First, the improved power allocations in each sensor group for different scenarios are provided. Then an optimal solution of power allocation among sensor groups is obtained by the convex optimization theory, and shown to outperform equal power allocation. The issue of balancing between the performance improvement and extra feedback required by the improved power allocation is also thoroughly discussed.

Page generated in 0.117 seconds