• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power Cycling with Switching Losses

Seidel, Peter 10 March 2021 (has links)
This paper deals with a method to additionally heat with switching losses in a classical power cycling test, as it is often used for power semiconductors.The fundamentals of testing, switching behavior, thermal and electrical characteristics of semiconductors are covered.The core of the work is the construction, start-up and solution of technical problems during the testing of the test stand. Another aspects are the measurement and software challenges in generating the pulse pattern and in evaluating the results. The last part of the work deals with the testing of different types of semiconductors, such as IGBTs and MOSFETs, which were also made of different materials, such as silicon and silicon carbide, and had different voltage classes.:Contents i Symbols and Abbreviations iii Introduction 1 1. Power Cycling Lifetime 2 1.1. Power Cycling-induced Ageing Mechanisms and Test Methods 2 1.1.1. Overview of Packaging Technologies and their Wear-out Failures 2 1.1.2. Failure Mechanisms in Power Modules and Discrete Devices 6 1.1.3. Basic Structure of a Test Bench for DC Power Cycling Tests 8 1.1.4. Modifications for SiC MOSFET Operation 12 1.1.5. Measurement Accuracy, Limits and Consequences for Test Evaluation 16 1.1.6. Thermal Resistance and Thermal Impedance Spectroscopy 18 1.2. Empirical Power Cycling Lifetime Models 21 2. Specific Limitations in Conditions for some Devices 27 3. Approaches of an Application-close Power Cycling Test 30 4. New Test Bench Concept with an adjustable part of switching losses 35 4.1. Basics for Switching 35 4.1.1. Active Clamping 38 4.1.2. Boosted Active Clamping 40 4.2. Repetitive Unclamped Inductive Switching 42 4.3. Test Bench Concept for Power Cycling Test with Turn-off Losses 44 4.4. Dimensioning of the Stray Inductance 47 4.4.1. Current Ripple and Attainable Switching Losses 51 4.5. Special Setup for Si and SiC MOSFETs 57 4.6. Measurement Algorithm and necessary Hardware 58 4.6.1. Measurement Hardware 58 4.6.2. Measurement Algorithm 60 4.6.3. Challenges during the Measurement 62 4.6.4. Current Source for Fast Regulation 66 5. Test Results with IGBTs 69 5.1. Modules with Baseplate 69 5.2. Modules without Baseplate 80 5.3. IGBTs in Discrete Housings 90 6. Test Results with MOSFETs 97 6.1. Low Voltage Si MOSFETs 97 6.2. SiC MOSFETs 106 7. Analysis of Si Low-voltage MOSFETs Results with FEM 107 8. Conclusion and Outlook 113 9. Acknowledgement 118 References 119 Appendix 136
2

Investigation of thermomechanical fatigue processes in power electronic packages with experiment and simulation

Schwabe, Christian 30 June 2023 (has links)
This work deals with the power cycling reliably of power modules and discrete devices. A small part was tested with standard test equipment, but the majority of devices were tested with an advanced test approach with additional switching losses. A large variety of packages under different conditions were tested: Discrete low-voltage silicon MOSFETs (<100 V), discrete SiC MOSFETs, baseplate-free SiC modules, medium power silicon modules and high power silicon modules. The core of the work is the investigation of low temperature swings in the transition between elastic and plastic deformation. During high operation temperatures, no significant increase in lifetime was observed, but at reduced junction temperatures, the impact was significant. All experimental results were transferred into a 3D simulation environment, for further investigation of the temperature and current distribution as well as the mechanical fatigue parameters, to allow a better understanding of the physical processes.
3

Some aspects in lifetime prediction of power semiconductor devices

Zeng, Guang 30 October 2019 (has links)
Power electronics, which fully covers the generation, conversion, transmission and usage of electrical energy, is a key technology for human welfare. With the development of technologies, the requirements on the reliability of power electronic systems are keep increasing. Long term operation under harsh environments is often accompanied by higher switching frequency and higher power density. To allow a reliable and sustainable performance of the power electronic systems, precise lifetime estimation of the power semiconductor devices is of significant importance. This work covers some aspects in the lifetime prediction of power semiconductor devices, especially IGBT and diode, in power module and transfer-molded discrete package. Difference in device temperature determination was illustrated using analytical calculation, simulation and measurement. In addition, temperature calculation in the frequency domain was demonstrated which gives benefits in the application with several hundred devices. Furthermore, different control strategies in the power cycling test were compared. The linear cumulative damage theory was validated by using the power cycling test. For the high power IGBT module used in the MMC HVDC application, power cycling lifetime with 50 Hz heating processes was investigated. For the transfer-molded discrete package, the first lifetime model with comparable scope like the lifetime model of power modules was proposed. / Leistungselektronik, welche direkt relevant für die Erzeugung, Umwandlung, Übertragung und Nutzung elektrischer Energie ist, ist eine Schlüsseltechnologie für das Wohl der Menschen. Mit der Entwicklung von Technologien steigen die Anforderungen an die Zuverlässigkeit leistungselektronischer Systeme. Der Langzeitbetrieb unter rauen Umgebungsbedingungen geht häufig mit einer höheren Schaltfrequenz und einer höheren Leistungsdichte einher. Um eine zuverlässige und nachhaltige Operation der leistungselektronischen Systeme zu ermöglichen, ist die genaue Lebensdauerabschätzung der Halbleiter-Leistungsbauelemente von großer Bedeutung. Diese Arbeit befasst sich mit einigen Aspekten der Lebensdauerabschätzung von den Halbleiter-Leistungsbauelementen. Unterschied in der Temperaturabstimmung der Halbleiter-Leistungsbauelemente wird anhand von Berechnung, Simulation und Messung veranschaulicht. Darüber hinaus bietet die Temperaturberechnung im Frequenzbereich Vorteile bei der Anwendung mit mehreren hundert Bauelementen. Darüber hinaus wurden verschiedene Regelstrategien im Lastwechseltest verglichen. Die lineare kumulative Alterungstheorie wurde unter Verwendung des Lastwechseltests validiert. Für das in der MMC-HGÜ-Anwendung verwendete Hochleistungs-IGBT-Modul wurden Alterungsprozesse bei 50 Hz Erwärmung untersucht. Für das Diskrete-Gehäuse wird das erste Lebensdauermodell vorgestellt, welches ein vergleichbares Anwendungsbereich wie das Lebensdauermodell von Leistungsmodulen hat.
4

Planar metallization failure modes in integrated power electtonics modules

Zhu, Ning 10 May 2006 (has links)
Miniaturizing circuit size and increasing power density are the latest trends in modern power electronics development. In order to meet the requirements of higher frequency and higher power density in power electronics applications, planar interconnections are utilized to achieve a higher integration level. Power switching devices, passive power components, and EMI (Electromagnetic Interference) filters can all be integrated into planar power modules by using planar metallization, which is a technology involving electrical, mechanical, material, and thermal issues. By processing high dielectric materials, magnetic materials, or silicon chips using compatible manufacturing procedures, and by carefully designing structures and interconnections, we can realize the conventional discrete inductors, capacitors, and switch circuits with planar modules. Compared with conventional discrete components, the integrated planar modules have several advantages including lower profiles, better form factors, and less labor-intensive processing steps. In addition, planar interconnections reduce the wire bond inductive and resistive parasitic parameters, especially for high frequency applications. However, planar integration technology is a packaging approach with a large contact area between different materials. This may result in unknown failure mechanisms in power applications. Extensive research has already been done to study the performance, processing, and reliability of the planar interconnects in thin film structures. The thickness of the thin films used in integrated circuits (IC) or microelectronics applications ranges from the magnitude of nanometers to that of micrometers. In this work, we are interested in adopting planar interconnections to Integrated Power Electronics Modules (IPEM). In Integrated Power Electronics Modules (IPEMs), copper traces, especially bus traces, need to conduct current ranging from a few amps to tens of amps. One of the major differences between IC and IPEM is that the metal layer in IPEMs (normally >75µm) is much thicker than that of the thin films in IC (normally <1µm). The other major difference, which is also a feature of IPEM, is that the planar metallization is deposited on different brittle substrates. In active IPEM, switching devices are in a bare die form with no encapsulation. The copper deposition is on top of the silicon chips and the insulation polyimide layer. One of the key elements for passive IPEM and the EMI IPEM is the integrated inductor-capacitor (LC) module, which realizes equivalent inductors and capacitors in one single module. The deposition processes for silicon substrates and ceramic substrates are compatible and both the silicon and ceramic materials are brittle. Under high current and high temperature conditions, these copper depositions on brittle materials will cause detrimental failure spots. Over the last few years, the design, manufacture, optimization, and testing of the IPEMs has been developed and well documented. Up to this time , the research on failure mechanisms of conventional integrated power modules has led to the understanding of failures centered on wire bond or solder layer. However, investigation on the reliability and failure modes of IPEM is lacking, particularly that which uses metallization on brittle substrates for high current operations. In this study, we conduct experiments to measure and calculate the residual stresses induced during the process. We also, theoretically model and simulate the thermo-mechanical stresses caused by the mismatch of thermal expansion coefficients between different materials in the integrated power modules. In order to verify the simulation results, the integrated power modules are manufactured and subjected to the lifetime tests, in which both power cycling and temperature cycling tests are carried out. The failure mode analysis indicates that there are different failure modes for copper films under tensile or compressive stresses. The failure detection process verifies that delamination and silicon cracks happen to copper films due to compressive and tensile stresses respectively. This study confirms that the high stresses between the metallization and the silicon are the failure drivers in integrated power electronics modules.. We also discuss the driving forces behind several different failure modes. Further understanding of thesefailure mechanisms enables the failure modes to be engineered for safer electrical operation of IPEM modules and helps to enhance the reliability of system-level operation. It is also the basis to improve the design and to optimize the process parameters so that IPEM modules can have a high resistance to recognized failures. / Ph. D.
5

Lebensdauermodellierung diskreter Leistungselektronikbauelemente unter Berücksichtigung überlagerter Lastwechseltests

Otto, Alexander 30 March 2021 (has links)
Lastwechseltests stellen eine standardisierte und etablierte Methode zur Zuverlässigkeitsbewertung und Produktqualifizierung in der Leistungselektronik dar. Sie basieren auf der Applikation von wiederkehrenden Laststromimpulsen, welche im Leistungsbauelement in zyklischen Temperaturschwankungen umgesetzt werden. Die dabei induzierten thermo-mechanischen Spannungen, hervorgerufen durch die unterschiedlichen Werkstoffeigenschaften der im Verbundsystem beteiligten Fügepartner, führen letztendlich zu den typischen Versagensmechanismen in der Aufbau- und Verbindungstechnik. Herkömmliche Lastwechseltests bilden allerdings die komplexen Belastungssituationen unter Feldbedingungen, in welchen unterschiedliche Lastfaktoren simultan auftreten, nur ungenügend nach. Im Kontext der Einführung neuartiger Bauelement- und Package-Technologien, rauer werdenden Umgebungsbedingungen sowie steigenden Zuverlässigkeits- und funktionalen Sicherheitsanforderungen ergibt sich somit der Bedarf an verbesserten Methoden zur Zuverlässigkeitstestbewertung. Ein möglicher Ansatz besteht in der Kombination verschiedener Belastungsarten, mit dem Ziel, Testeffizienz sowie Testabdeckung zu erhöhen. Im Rahmen dieser Arbeit wurden daher unter Verwendung eines selbstentwickelten Lastwechselteststandes systematische Lastwechseltestuntersuchungen, sowohl in standardmäßiger Ausführung als auch mit überlagerten passiven Temperaturzyklen, an diskreten Leistungsbauelementen durchgeführt. Neben der Untersuchung unterschiedlicher Sperrschichttemperaturprofile erfolgte auch ein Vergleich unterschiedlicher Bauelementtypen. Auf Basis einer qualitativen und quantitativen Testauswertung wurden belastungsbasierte Lebensdauermodelle aufgestellt. Dabei zeigte sich, dass die den Standard-Lastwechseltests zugrunde-liegenden Lebensdauermodelle nicht die Testergebnisse der überlagerten Lastwechseltests vorhersagen konnten. Die Ursache dafür lag im temperaturabhängigen Werkstoffverhalten der Moldmasse begründet, welches Einfluss auf den dominierenden Fehlermodus Bonddrahtabheber hat. Daher wird die Verwendung von fall-sensitiven Lebensdauermodellen vorgeschlagen, da somit die veränderte Schädigungsphysik beim Überschreiten des Glasüberganges der Moldmasse berücksichtigt werden kann. Darüber hinaus wird in dieser Arbeit eine neue Methode zur optischen in-situ-Untersuchung von Leistungsbauelementen vorgestellt, welche zukünftig die Untersuchung von thermisch-transienten sowie thermo-mechanischen Vorgängen unter aktiver Belastung erlaubt.:Symbol- und Abkürzungsverzeichnis Danksagung Kurzfassung Abstract 1 Einleitung 1.1 Motivation 1.2 Fokus und Ziel der Arbeit 2 Grundlagen zur Leistungselektronik und zu ihrer Zuverlässigkeitsbewertung 2.1 Aufbau typischer Leistungselektronikkomponenten und Module 2.1.1 Leistungsklassen und klassische Aufbauvarianten 2.1.2 Leistungshalbleiter 2.1.3 Substrattechnologien für Leistungsmodule 2.1.4 Verbindungstechniken in Leistungselektronikmodulen 2.1.4.1 Chipflächen- und Baugruppenkontaktierung 2.1.4.2 Chipanschlusskontaktierung 2.1.4.3 Kühlkörperanbindung 2.1.5 Verkapslungskonzepte 2.1.6 Kühlkonzepte in der Leistungselektronik 2.2 Typische Fehlermodi und -mechanismen 2.3 Lebensdauerbewertung von Leistungselektronik0 2.3.1 Globale Ansätze zur Produktqualifizierung und Zuverlässigkeitsbewertung0 2.3.2 Lebensdauertests in der Leistungselektronik 2.3.2.1 Überblick und Einordnung von Lastwechseltests 2.3.2.2 Testkonzepte und -strategien 2.3.3 Lebensdauermodellierung 3 Neue methodische Ansätze und Prüfstandsentwicklung 3.1 Überlagerung von aktiven Lastwechseln mit passiven Temperaturzyklen 3.2 Entwicklung und Aufbau eines Lastwechselprüfstandes zur Untersuchung von überlagerten Belastungstests 3.2.1 Konzeption 3.2.2 Kühlkörper-Design 3.2.3 Steuer- und Auswertesoftware 3.2.4 Lastwechselteststand 3.2.5 Messprozedur 3.2.6 Validierung der Tvj-basierten Temperaturmessung 3.3 Optisches In-situ-Monitoring während Lastwechseltests 3.3.1 Testaufbau und Probenpräparation 3.3.2 IR-Messungen an angeschliffenem Prüfling 4 Prüfgegenstände, Testplanung und Testdurchführung 4.1 Auswahl und Übersicht der Prüflinge 4.2 Testkonzeption und Versuchsplanung 4.2.1 Lastwechseltests 4.2.2 Temperaturschocktests 4.3 Testaufbau und -durchführung 4.3.1 Lastwechseltests 4.3.2 Temperaturschocktests 5 Testergebnisse 5.1 Messdatenanalyse und Auswerteprozedur 5.2 Statistische Testauswertung 5.2.1 Übersicht über Testergebnisse 5.2.2 Weibull-Verteilungen 5.3 Fehleranalytik 5.3.1 Bonddrahtausfälle 5.3.2 Lotdegradation 5.4 Optische In-situ-Analyse während aktiver Belastung 5.4.1 Methodik 5.4.2 Verschiebungsfelder in Abhängigkeit von ∆Tvj und Tvj,m 5.4.3 Einfluss der Einschaltzeit ton auf Verschiebungsfelder 5.4.4 Ableitung der Dehnungsfelder und Ergebnisdiskussion 6 Lebensdauermodellierung 6.1 Belastungsbasierte Lebensdauermodelle 6.1.1 Lebensdauerdiagramme und -einflussfaktoren 6.1.2 Multiple lineare Regression 6.1.3 Berücksichtigung der effektiven Temperatur T(v)j,eff 6.1.4 Vergleich der Lebensdauermodelle mit überlagerten Testergebnissen 6.1.5 Zusammenfassung 146 6.1.6 Einordnung der ermittelten Lebensdauermodelle 6.2 FE-Analyse zur Validierung der Ergebnisse aus der Lebensdauermodellierung 7 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis / Active power cycling tests represent a standardized and well-established method for reliability evaluation and product qualification in power electronics. They are based on the application of recurring load current pulses, which are converted into cyclic temperature swings in the power component. The thereby induced thermo-mechanical stress, caused by the different material properties of the joining partners involved in the composite system, ultimately leads to the typical failure modes and mechanisms in the devices. However, these conventional tests do not sufficiently stimulate the complex load schemes in field operations in which different load factors occur simultaneously. In the context of the introduction of novel device and package technologies, increasingly harsh environmental operation conditions as well as increasing reliability and functional safety requirements, there is a need for improved reliability test methods. One possible approach is the combination of different load factors in order to increase test efficiency and test coverage. Within the scope of this thesis, systematic reliability investigations, including standard power cycling tests as well as power cycling tests superimposed with passive thermal cycles, were therefore carried out on discrete power components using a self-developed test rig. In addition to the investigation of different junction temperature profiles, a comparison of different component types was performed. On the basis of a qualitative and quantitative test evaluation, load-based lifetime models were derived. It was found that the lifetime models determined on the basis of the standard power cycling tests could not predict the test results of the superimposed power cycling tests. The reason for this was the influence of the temperature-dependent material behaviour of the moulding com-pound, which has an influence on the failure mode wire-bond lift-off. Based on these findings, the use of case-sensitive lifetime models is suggested that are able to take the changed damage physics into account. In addition, a new method for the optical in-situ investigation of moulded power devices is presented, which allows the investigation of thermal-transient as well as thermo-mechanical processes in the package under active loading conditions.:Symbol- und Abkürzungsverzeichnis Danksagung Kurzfassung Abstract 1 Einleitung 1.1 Motivation 1.2 Fokus und Ziel der Arbeit 2 Grundlagen zur Leistungselektronik und zu ihrer Zuverlässigkeitsbewertung 2.1 Aufbau typischer Leistungselektronikkomponenten und Module 2.1.1 Leistungsklassen und klassische Aufbauvarianten 2.1.2 Leistungshalbleiter 2.1.3 Substrattechnologien für Leistungsmodule 2.1.4 Verbindungstechniken in Leistungselektronikmodulen 2.1.4.1 Chipflächen- und Baugruppenkontaktierung 2.1.4.2 Chipanschlusskontaktierung 2.1.4.3 Kühlkörperanbindung 2.1.5 Verkapslungskonzepte 2.1.6 Kühlkonzepte in der Leistungselektronik 2.2 Typische Fehlermodi und -mechanismen 2.3 Lebensdauerbewertung von Leistungselektronik0 2.3.1 Globale Ansätze zur Produktqualifizierung und Zuverlässigkeitsbewertung0 2.3.2 Lebensdauertests in der Leistungselektronik 2.3.2.1 Überblick und Einordnung von Lastwechseltests 2.3.2.2 Testkonzepte und -strategien 2.3.3 Lebensdauermodellierung 3 Neue methodische Ansätze und Prüfstandsentwicklung 3.1 Überlagerung von aktiven Lastwechseln mit passiven Temperaturzyklen 3.2 Entwicklung und Aufbau eines Lastwechselprüfstandes zur Untersuchung von überlagerten Belastungstests 3.2.1 Konzeption 3.2.2 Kühlkörper-Design 3.2.3 Steuer- und Auswertesoftware 3.2.4 Lastwechselteststand 3.2.5 Messprozedur 3.2.6 Validierung der Tvj-basierten Temperaturmessung 3.3 Optisches In-situ-Monitoring während Lastwechseltests 3.3.1 Testaufbau und Probenpräparation 3.3.2 IR-Messungen an angeschliffenem Prüfling 4 Prüfgegenstände, Testplanung und Testdurchführung 4.1 Auswahl und Übersicht der Prüflinge 4.2 Testkonzeption und Versuchsplanung 4.2.1 Lastwechseltests 4.2.2 Temperaturschocktests 4.3 Testaufbau und -durchführung 4.3.1 Lastwechseltests 4.3.2 Temperaturschocktests 5 Testergebnisse 5.1 Messdatenanalyse und Auswerteprozedur 5.2 Statistische Testauswertung 5.2.1 Übersicht über Testergebnisse 5.2.2 Weibull-Verteilungen 5.3 Fehleranalytik 5.3.1 Bonddrahtausfälle 5.3.2 Lotdegradation 5.4 Optische In-situ-Analyse während aktiver Belastung 5.4.1 Methodik 5.4.2 Verschiebungsfelder in Abhängigkeit von ∆Tvj und Tvj,m 5.4.3 Einfluss der Einschaltzeit ton auf Verschiebungsfelder 5.4.4 Ableitung der Dehnungsfelder und Ergebnisdiskussion 6 Lebensdauermodellierung 6.1 Belastungsbasierte Lebensdauermodelle 6.1.1 Lebensdauerdiagramme und -einflussfaktoren 6.1.2 Multiple lineare Regression 6.1.3 Berücksichtigung der effektiven Temperatur T(v)j,eff 6.1.4 Vergleich der Lebensdauermodelle mit überlagerten Testergebnissen 6.1.5 Zusammenfassung 146 6.1.6 Einordnung der ermittelten Lebensdauermodelle 6.2 FE-Analyse zur Validierung der Ergebnisse aus der Lebensdauermodellierung 7 Zusammenfassung und Ausblick Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Page generated in 0.1107 seconds