• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 20
  • 20
  • 8
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 117
  • 117
  • 117
  • 47
  • 31
  • 26
  • 26
  • 24
  • 24
  • 23
  • 22
  • 19
  • 19
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Single-Stage High-Power-Factor Electronic Ballast with Class E Inverter for Fluorescent Lamps

Huang, Shih-Hung 11 June 2002 (has links)
A single-stage high-power-factor electronic ballast with class E inverter is proposed for driving the fluorescent lamp. The circuit configuration is obtained from the integration of a buck-boost converter for power-factor- correction (PFC) and a class E resonant inverter for ballasting. The integrated ballast circuit requires only one active power switch and simple control. Operating the buck-boost converter in discontinuous conduction mode (DCM) at a fixed frequency, the electronic ballast can achieve nearly unity power factor. With pulse-width-modulation (PWM), the electronic ballast can provide an appropriate filament current for preheating, a high voltage for ignition, and then a desired lamp current for steady-state operation. An additional control circuit is included to eliminate the glow current during preheating stage. The operation of the ballast-lamp circuit is analyzed by fundamental approximation. Computer simulations are made and design equations are derived on basis of the power-dependent resistance model of the fluorescent lamp. With carefully designed circuit parameters, the active power switch can be switched on at zero current to reduce the switching losses leading to a higher efficiency. An experimental circuit designed for a PL-27W compact fluorescent lamp is built and tested to verify the computer simulations and analytical predictions. Experimental results show that satisfactory performances can be obtained on the proposed electronic ballast.
32

Metodologia de projeto de conversores boost para correção de fator de potência apliocada a sistemas ininterruptos de energia / A design methodology for boost converters to power factor correction applied in uninterrruptible power supplies

Damasceno, Daniel da Motta Souto 20 April 2006 (has links)
This Master Thesis presents a design methodology to a boost PFC converter operating as an Uninterruptible Power Supply rectifier input stage. This methodology defines, making use of a group of current ripples and switching frequencies, the converter minimum volume point analyzing the volumes of the boost inductor, the electromagnetic interference filter and the heat-sinks. Thus, it's developed along this work, each design mentioned above, analyzing the impact of different magnetic materiaIs, input filter topologies and semiconductors technologies. Previously, it is designed the controller and it is developed a simulation structure. ln a second moment, it's designed the boost inductor for a predetermined temperature elevation. After this, it's designed the electromagnetic filter analyzing the impact of different topologies. The heat-sinks are also designed to guarantee the semiconductors operation within the temperature limits. Finally, the methodology based on the previous designs is accomplished, using the procedures and equations already mentioned, becoming possible to define the converter minimum volume point. / Esta Dissertação de Mestrado apresenta uma metodologia de projeto para o conversor boost operando como estágio retificador de entrada em uma fonte de alimentação ininterrupta. Essa metodologia se baseia em definir, através de um conjunto de freqüências de comutação e ondulações de corrente, o ponto de minimização do volume do conversor considerando o volume do indutor, do filtro de interferência eletromagnética conduzida e dos dissipadores. Assim, é desenvolvido ao longo desse trabalho o projeto de cada elemento mencionado estudando o impacto do uso de diferentes materiais magnéticos, topologias de filtro de entrada e tecnologias de semicondutores. Inicialmente é projetado o controlador e desenvolvida a estrutura de simulação do conversor. Em um segundo momento é projetado o indutor boost para uma determinada elevação de temperatura. A seguir é projetado o filtro de interferência eletromagnética analisando o impacto de diferentes topologias. Também são projetados os dissipadores que garantem a operação dos semicondutores dentro dos limites de temperatura estabelecidos pelos fabricantes. Por fim, é formalizada a metodologia baseada nos projetos anteriores, pela qual, fazendo uso dos procedimentos e equações fornecidos, torna-se possível definir o ponto de minimização do volume do conversor.
33

Advanced high frequency switched-mode power supply techniques and applications

Nuttall, Daniel Robert January 2011 (has links)
This Thesis examines the operation and dynamic performance of a single-stage, single-switch power factor corrector, S4 PFC, with an integrated magnetic device, IM. Also detailed isthe development and analysis of a high power light emitting diode, HP LED, power factorcorrection converter and proposed voltage regulation band control approach.The S4 PFC consists of a cascaded discontinuous current mode, DCM, boost stage anda continuous current mode, CCM, forward converter. The S4 PFC achieves a high powerfactor, low input current harmonics and a regulated voltage output, utilising a singleMOSFET. A steady-state analysis of the S4 PFC with the IM is performed, identifying theoperating boundary conditions for the DCM power factor correction stage and the CCMoutput voltage regulation stage. Integrated magnetic analysis focuses on understanding theperformance, operation and generated flux paths within the IM core, ensuring the device doesnot affect the normal operation of the converter power stage. A design method for the S4 PFCwith IM component is developed along with a cost analysis of this approach. Analysis predictsthe performance of the S4 PFC and the IM, and the theoretical work is validated by MATLABand SABER simulations and measurements of a 180 W prototype converter.It is not only the development of new topological approaches that drives theadvancement of power electronic techniques. The recent emergence of HP LEDs has led to aflurry of new application areas for these devices. A DCM buck-boost converter performs thepower factor correction and energy storage, and a cascaded boundary conduction current modebuck converter regulates the current through the LED arrays. To match the useful operatinglifetime of the HP LEDs, electrolytic capacitors are not used in the PFC converter. Analysisexamines the operation and dynamic characteristics of a PFC converter with low capacitiveenergy storage capacity and its implications on the control method. A modified regulationband control approach is proposed to ensure a high power factor, low input current harmonicsand output voltage regulation of the PFC stage. Small signal analysis describes the dynamicperformance of the PFC converter, Circle Criterion is used to determine the loop stability.Theoretical work is validated by SABER and MATLAB simulations and measurements of a180 W prototype street luminaire.
34

Accurate Estimation of Core Losses for PFC Inductors

January 2019 (has links)
abstract: As the world becomes more electronic, power electronics designers have continuously designed more efficient converters. However, with the rising number of nonlinear loads (i.e. electronics) attached to the grid, power quality concerns, and emerging legislation, converters that intake alternating current (AC) and output direct current (DC) known as rectifiers are increasingly implementing power factor correction (PFC) by controlling the input current. For a properly designed PFC-stage inductor, the major design goals include exceeding minimum inductance, remaining below the saturation flux density, high power density, and high efficiency. In meeting these goals, loss calculation is critical in evaluating designs. This input current from PFC circuitry leads to a DC bias through the filter inductor that makes accurate core loss estimation exceedingly difficult as most modern loss estimation techniques neglect the effects of a DC bias. This thesis explores prior loss estimation and design methods, investigates finite element analysis (FEA) design tools, and builds a magnetics test bed setup to empirically determine a magnetic core’s loss under any electrical excitation. In the end, the magnetics test bed hardware results are compared and future work needed to improve the test bed is outlined. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2019
35

Analysis and implementation of ripple current cancellation technique for electronic ballasts

Marita, Marius G. January 2005 (has links)
No description available.
36

Conducted EMI Noise Prediction and Filter Design Optimization

Wang, Zijian 04 October 2016 (has links)
Power factor correction (PFC) converter is a species of switching mode power supply (SMPS) which is widely used in offline frond-end converter for the distributed power systems to reduce the grid harmonic distortion. With the fast development of information technology and multi-media systems, high frequency PFC power supplies for servers, desktops, laptops and flat-panel TVs, etc. are required for more efficient power delivery within limited spaces. Therefore the critical conduction mode (CRM) PFC converter has been becoming more and more popular for these information technology applications due to its advantages in inherent zero-voltage soft switching (ZVS) and negligible diode reverse recovery. With the emerging of the high voltage GaN devices, the goal of achieving soft switching for high frequency PFC converters is the top priority and the trend of adopting the CRM PFC converter is becoming clearer. However, there is the stringent electromagnetic interference (EMI) regulation worldwide. For the CRM PFC converter, there are several challenges on meeting the EMI standards. First, for the CRM PFC converter, the switching frequency is variable during the half line cycle and has very wide range dependent on the AC line RMS voltage and the load, which makes it unlike the traditional constant-frequency PFC converter and therefore the knowledge and experience of the EMI characteristics for the traditional constant-frequency PFC converter cannot be directly applied to the CRM PFC converter. Second, for the CRM PFC converter, the switching frequency is also dependent on the inductance of the boost inductor. It means the EMI spectrum of the CRM PFC converter is tightly related the boost inductor selection during the design of the PFC power stage. Therefore, unlike the traditional constant-frequency PFC converter, the selection of the boost inductor is also part of the EMI filter design process and EMI filter optimization should begin at the same time when the power stage design starts. Third, since the EMI filter optimization needs to begin before the proto-type of the CRM PFC converter is completed, the traditional EMI-measurement based EMI filter design will become much more complex and time-consuming if it is applied to the CRM PFC converter. Therefore, a new methodology must be developed to evaluate the EMI performance of the CRM PFC converter, help to simplify the process of the EMI filter design and achieve the EMI filter optimization. To overcome these challenges, a novel mathematical analysis method for variable frequency PFC converter is thus proposed in this dissertation. Based on the mathematical analysis, the quasi-peak EMI noise, which is specifically required in most EMI regulation standards, is investigated and accurately predicted for the first time. A complete approximate model is derived to predict the quasi-peak DM EMI noise for the CRM PFC converter. Experiments are carried out to verify the validity of the prediction. Based on the DM EMI noise prediction, worst case analysis is carried out and the worst DM EMI noise case for all the input line and load conditions can be found to avoid the overdesign of the EMI filter. Based on the discovered worst case, criteria to ease the DM EMI filter design procedure of the CRM boost PFC are given for different boost inductor selection. Optimized design procedure of the EMI filter for the front-end converter is then discussed. Experiments are carried out to verify the validity of the whole methodology. / Ph. D.
37

Mobile Hybrid Power System Theory of Operation

Pierce, Timothy M. Jr. 08 August 2016 (has links)
Efficiency is a driving constraint for electrical power systems as global energy demands are ever increasing. Followed by the introduction of diesel generators, electricity has become available in more locations than ever. However, operating a diesel generator on its own is not the most energy efficient. This is because the high crest factor loads, of many applications, decrease the fuel efficiency of a hydrocarbon generator. To understand this, we need to understand how an electrical load affects a generator. Starting with a load profile, a system designer must choose a generator to meet peak demand, marking the first instance where a load profile has influence over a generator. This decision will insure that brownouts do not occur, but, this will lead to poor energy efficiency. We say this because a generator is most energy efficient under heavier loads, meaning, during lighter loads, more fuel will be consumed to produce the same amount of energy. While this may be fine if the peak load was close to the average load, however, the actual crest factor for a typical residential load profile is much higher. This gap between peak and average load means that a generator will spend most of its time operating at its most inefficient point. To compensate for this, and reduce fuel consumption, the Mechatronics Lab at Virginia Tech has developed a mobile hybrid power system (MHPS) to address this problem. The solution was to augment a diesel generator with a battery pack. This allowed us to constrain the generator so that it only operates with fixed efficiency. It is the theory behind this system that will be covered in this thesis. / Master of Science
38

High Efficiency SEPIC Converter For High Brightness Light Emitting Diodes (LEDs) System

Qin, Yaxiao 14 September 2012 (has links)
This thesis presents an investigation into the characteristics of and driving methods for light emitting diode (LED) lamp system. A comprehensive overview on the lighting development is proposed. The characteristic of the light emitting diode (LED) lamp is described and the requirements of the ballast for the light emitting diode (LED) lamp are presented. Although LED lamps have longer lifetime than fluorescent lamps, the short lifetime limitation of LED driver imposed by electrolytic capacitor has to be resolved. Therefore, an LED driver without electrolytic capacitor in the whole power conversion process is preferred. In this thesis, a single phase, power factor correction converter without electrolytic capacitors for LED lighting applications is proposed, which is a modified SEPIC converter working in discontinuous conduction mode (DCM). Different with a conventional SEPIC converter, the middle capacitor is replaced with a valley-fill circuit. The valley-fill circuit could reduce the voltage stress of output diode and middle capacitor under the same power factor condition, thus achieving higher efficiency. Instead of using an electrolytic capacitor for the filter, a polyester capacitor of better lifetime expectancy is used. An interleaved power factor correction SEPIC with valley fill circuit is proposed to further increase the efficiency and to reduce the input and output filter size and cost. The interleaved converter shows the features such as ripple cancellation, good thermal distribution and scalability. / Master of Science
39

Performance Improvement of Power Conversion by Utilizing Coupled Inductors

Zhao, Qun 27 March 2003 (has links)
This dissertation presents the derivation, analysis and application issues of advanced topologies with coupled inductors. The proposed innovative solutions can achieve significant performance improvement compared to the state-of-the-art technology. New applications call for high-efficiency high step-up DC-DC converters. The basic topologies suffer from extreme duty ratios and severe rectifier reverse recovery. Utilizing coupled inductor is a simple solution to avoid extreme duty ratios, but the leakage inductance associated with the coupled inductor induces severe voltage stress and loss. An innovative solution is proposed featuring with efficient leakage energy recovery and alleviated rectifier reverse recovery. Impressive efficiency improvement is achieved with a simple topology structure. The coupled inductor switching cell is identified. Topology variations and evaluations are also addressed. The concept that utilizes coupled inductors to alleviate rectifier reverse recovery is then extended, and new topologies suitable for other applications are generated. The proposed concept is demonstrated to solve the severe rectifier reverse recovery that occurs in continuous current mode (CCM) boost converters. Significant profile reduction and power density improvement can be achieved in front-end CCM power factor correction (PFC) boost converters, which are the overwhelmingly choice for use in telecommunications and server applications. This dissertation also proposes topologies to realize the single-stage parallel PFC by utilizing coupled inductors. Compared to the state-of-the-art single-stage PFC converters, the proposed topologies introduce a new power flow pattern that minimizes the bulk-capacitor voltage stress and the switch current stress. / Ph. D.
40

Three Dimensional Passive Integrated Electronic Ballast for Low Wattage HID Lamps

Jiang, Yan 03 April 2009 (has links)
Around 19% of global power consumption and around 3% of global oil demand is attributable to lighting. After the first incandescent lamp was invented in 1879, more and more energy efficient lighting devices, such as gas discharge lamps, and light-emitting diodes (LED), have been developed during the last century. It is estimated that over 38% of future global lighting energy demand could be avoided by the use of more efficient lamps and ballasts [1]. High intensity discharge (HID) lamps, one category of gas discharge lamp, have been widely used in both commercial and residential lighting applications due to their merits of high efficacy, long life, compact size and good color rendition [2-4]. However, HID lamps require a well-designed ballast to stabilize the negative VI characteristics. A so-called ignitor is also needed to provide high voltage to initiate the gas discharge. Stringent input harmonic current limits, such as the IEC 61000-3-2 Class C standard, are set for lighting applications. It is well-known that high-frequency electronic ballasts can greatly save energy, improve lamp performance, and reduce the ballast size and weight compared with the conventional magnetic ballast. However, a unique phenomenon called acoustic resonance could occur in HID lamps under high-frequency operation. A low-frequency square wave current driving scheme has proved to be the only effective method to avoid acoustic resonance in HID lamps. A typical electronic HID ballast consist of three stages: power factor correction (PFC), DC/DC power regulation and low-frequency DC/AC inverter. The ignitor is usually integrated in the inverter stage. The three-stage structure results in a large size and high cost, which unfortunately offsets the merit of the HID lamp, especially in low-wattage applications. In order to make HID lamps more attractive in low-wattage and indoor applications, it is critical to reduce the size, weight and cost of HID ballasts. This dissertation is aimed at developing a compact HID with an ultra-compact ballast installed inside the lamp fixture. It is a similar concept to the compact fluorescent lamp (CFL), but it is much more challenging than the CFL. Two steps are explored to achieve high power density of the HID ballast. The first step is to improve the system structure and circuit topology. Instead of a three-stage structure, a two-stage structure is proposed, which consists of a single-stage power factor correction (SSPFC) AC/DC front-end and an unregulated DC/AC inverter/ignitor stage. An SSPFC AC/DC converter is proposed as the front-end. A DCM non-isolated flyback PFC semi-stage and a DCM buck-boost DC/DC semi-stage share the semiconductor switch, driver and PWM controller, so that the component count and cost can be reduced. The proposed SSPFC AC/DC front-end converter can achieve a high power factor, low THD, low bulk capacitor voltage, and the desired power regulation with a simple control circuit. Because the number of high-frequency switches is reduced compared to that of state-of-the-art two-stage HID ballast topologies, the switching frequency can be increased without sacrificing high efficiency, so the passive component size can be reduced. The power density of the whole ballast is increased using this two-stage structure. It results in a 2.5 times power density (6 W/in3) improvement compared to the commercial product (2.4 W/in3). The power density of the converter in discrete fashion usually suffers as a result of poor three-dimensional (3D) volume utilization due to a large component count and the different form factor of different components. In the second step, integration and packaging technologies are explored to further increase the power density. A 3D passive integrated HID ballast is proposed in this dissertation. All power passive components are designed in planar shape with a uniform form factor to fully utilize the three-dimensional space. In addition, electromagnetic integration technologies are applied to achieve structural, functional and processing integration to reduce component volume and labor cost. System partitioning, integration and packaging strategies, and implementation of major power passive integration, including an integrated EMI filter, and an integrated ignitor, will be discussed in the dissertation. The proposed integrated ballast is projected to double the power density of the discrete implementation. By installing the HID ballast inside the lamp fixture, the ambient temperature for the ballast will be much higher than the conventional separately installed ballast, and combined with a reduced size, the thermal condition for the integrated ballast will be much more severe. A thermal simulation model of the integrated ballast is built in the IDEAS simulation tool, and appropriate thermal management methods are investigated using the IDEAS simulation model. Experimental verification of various thermal management methods is provided. Based on the thermal management study, a new integrated ballast with improved thermal design is proposed. / Ph. D.

Page generated in 0.088 seconds