Spelling suggestions: "subject:"power fluctuations.""
1 |
Clean water from clean energy : removal of dissolved contaminants from brackish groundwater using wind energy powered electrodialysisMalek, Payam January 2015 (has links)
Around 770 million people lack access to improved drinking water sources (WHO 2013), urgently necessitating implementation of contaminant removal by e.g. desalination systems on a large scale. To improve water quality and enable use of brackish water sources for human consumption in remote arid areas, a directly coupled wind – electrodialysis system (Wind-ED) was developed. Modularity, sustainability and above all suitability for the practical use in off-grid locations were the main motivations and design objectives. The direct coupling of wind energy with membranes reduces the system costs as well as technical drawbacks associated with using intermediate energy storage systems. During this research, systematic experiments were performed using the Wind-ED system in order to determine desalination performance and clean water production, specific energy consumption (SEC) and current efficiency (ηc) under relevant conditions, such as varying: i) wind speed, ii) wind turbulence intensity, iii) oscillation periods, iv) varying NaCl concentrations and v) flow rates. Moreover, the competitive removal of four commonly available inorganic contaminants in brackish groundwater sources, nitrate (NO3-), fluoride (F-), sulphate (SO42-) and chloride (Cl-), were investigated. Firstly, to establish a systematic understanding of how and to what extent energy fluctuations influence the transport of the salt (i.e. NaCl) ions across the membranes, experiments were conducted using pulsed electric field assisted electrodialysis (pulsed-ED) over a wide range of frequencies (0.001 – 10 Hz) and duty cycles (20 – 80). The results showed that pulsation applied in the sub-limiting regime resulted in reduced water production, explained by the delays caused by the off-periods during the pulsed desalination process. At higher current densities, pulsation led to considerable improvements in current (e.g. up to 95%, for a feed solution of 500 mg/L and a pulse regime of 1 Hz at 50 V peak voltage) and significant reduction in water dissociation, explained by a reduction of concentration polarisation. Importantly, the pulsation had no significant effect on energy consumption or current efficiency suggesting that ED could be suitable for direct coupling to fluctuating energy sources such as wind energy. ED was consequently coupled to a wind turbine system and a series of desalination tests were performed over a wide range of wind speeds (2-10 m/s), turbulence intensities (TI of 0-0.6) and oscillation periods (0-180 s). Results showed that water production and SEC increased with wind speed. However, both the water production and SEC stopped increasing as the power output from the turbine levelled off at wind speeds above the rated value (vrated: 7.9 – 8.4 m/s). The impact of wind speed fluctuations on the system performance were insignificant up to a TI of 0.4. The desalination performance declined under high turbulence intensity fluctuations (TIs ≥ 0.5) and long periods of oscillation (> 40 s), as the wind-ED system periodically cycled off in response to operation below the cut-in wind speed of the wind turbine (vcut-in: ~ 2 m/s). The off-cycling of the system caused significant delays in the desalination process, and thus resulted in reduced water production. Further reduction in the water production resulted as the wind-ED system operated under intermittent wind speed conditions with off-wind periods longer than 10 s. It was concluded that the main challenge in direct coupling of ED to a wind resource was not the magnitude of the fluctuations but the impact of the power cycling off during long periods of oscillation and lengthy periods of no wind. Interestingly, the SEC of the process remained relatively unaffected by the fluctuations and intermittencies in the wind resource. The effect of energy fluctuations on the competitive transport of F-, Cl-, NO3- and SO42- from artificial brackish water (TDS ~4350 mg/L) was investigated using different sets of real wind data. The ion removal, independent of the wind regime tested, followed the order: NO3- ≥ Cl- > F- > SO42-. The competitive removal of the ions was linked to differences in physicochemical properties (i.e. hydration energy, ionic mobility and valence). The specific selectivity (e.g. preferential transport of NO3- over SO42- ions) was found to increase with concentration polarisation being either minimised (by lowering the mean wind speed) or disrupted (by fluctuations in the wind resource). The results from flow rate and feed concentration experiments, showed that power production of the wind turbine depended on not only the available wind energy but also the resistance of the load (i.e. the ED stack). Thus, increasing the feed concentration and the flow rate resulted in reduced resistance in the ED stack (Rstack), which inversely influenced the current induction counter torque force applied on the shaft of the wind turbine and caused the rotor to spin at a lower angular velocity. This led to increased sensitivity of the wind-ED system to wind speed fluctuations (e.g. system cycled off due to extreme fluctuations and intermittencies with low TDS feed concentration of 2400 mg/L) and hence a reduction of desalination performance. Impact of flow rate on the SEC was found to be negligible; this was attributed to the automatic voltage to current adjustments done by the wind turbine, in order to minimise the impacts of Rstack on the power production by the turbine at a given wind speed. Increased flow rate and resulting shrinkage of the boundary layer’s thickness, caused the concentration profiles at the solution-membrane interface to become steeper. This favoured the transport of ions with the highest diffusion coefficients in the mixture (i.e. Cl- and NO3-). Decreased flow rate favoured the transport of ions with larger valence numbers and higher electric mobility inside the electrolyte (i.e. SO42-); as the former property governed the faster migration of SO42- ions through the thick boundary layer and the latter property assisted with the improved affinity of the ion-exchange membrane to SO42- ions compared to the monovalent anions in the mixture. Increasing the feed concentration of Cl- from 500 to 2,550 mg/L led to reduced transport numbers for the other anions in the mixture and significantly reducing their removal rate. The results obtained from both the pulsed-ED and wind-ED experiments showed that, despite direct coupling to the fluctuating energy source the SEC of the process remained relatively unaffected by the energy fluctuations. Although the desalination process might require more time to be completed when operating under extreme wind speed fluctuations and intermittencies, the quality of the drinking water produced was always within the WHO standards. In conclusion, the findings from this research prove the wind-ED system to be an energetically robust and a reliable off-grid desalination technique suitable for the treatment of brackish groundwater in water stressed remote regions.
|
2 |
Energy and Transient Power Minimization During Behavioral SynthesisMohanty, Saraju P 17 October 2003 (has links)
The proliferation of portable systems and mobile computing platforms has increased the need for the design of low power consuming integrated circuits. The increase in chip density and clock frequencies due to technology advances has made low power design a critical issue. Low power design is further driven by several other factors such as thermal considerations and environmental concerns. In low-power design for battery driven portable applications, the reduction of peak power, peak power differential, average power and energy are equally important. In this dissertation, we propose a framework for the reduction of these parameters through datapath scheduling at behavioral level. Several ILP based and heuristic based scheduling schemes are developed for datapath synthesis assuming : (i) single supply voltage and single frequency (SVSF), (ii) multiple supply voltages and dynamic frequency clocking (MVDFC), and (iii) multiple supply voltages and multicycling (MVMC). The scheduling schemes attempt to minimize : (i) energy, (ii) energy delay product, (iii) peak power, (iv) simultaneous peak power and average power, (v) simultaneous peak power, average power, peak power differential and energy, and (vi) power fluctuation.
A new parameter called "Cycle Power Function" (CPF) is defined which captures the transient power characteristics as the equally weighted sum of normalized mean cycle power and normalized mean cycle differential power. Minimizing this parameter using multiple supply voltages and dynamic frequency clocking results in the reduction of both energy and transient power. The cycle differential power can be modeled as either the absolute deviation from the average power or as the cycle-to-cycle power gradient. The switching activity information is obtained from behavioral simulations. Power fluctuation is modeled as the cycle-to-cycle power gradient and to reduce fluctuation the mean power gradient (MPG) is minimized. The power models take into consideration the effect of switching activity on the power consumption of the functional units.
Experimental results for selected high-level synthesis benchmark circuits under different constraints indicate that significant reductions in power, energy and energy delay product can be obtained and that the MVDFC and MVMC schemes yield better power reduction compared to the SVSF scheme. Several application specific VLSI circuits were designed and implemented for digital watermarking of images. Digital watermarking is the process that embeds data called a watermark into a multimedia object such that the watermark can be detected or extracted later to make an assertion about the object. A class of VLSI architectures were proposed for various watermarking algorithms : (i) spatial domain invisible-robust watermarking scheme, (ii) spatial domain invisible-fragile watermarking scheme, (iii) spatial domain visible watermarking scheme, (iv) DCT domain invisible-robust watermarking scheme, and (v) DCT domain visible watermarking scheme. Prototype implementation of (i), (ii) and (iii) are given. The hardware modules can be incorporated in a "JPEG encoder" or in a "digital still camera".
|
3 |
Energy and transient power minimization during behavioral synthesis [electronic resource] / by Saraju P Mohanty.Mohanty, Saraju P. January 2003 (has links)
Includes vita. / Title from PDF of title page. / Document formatted into pages; contains 289 pages. / Thesis (Ph.D.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: The proliferation of portable systems and mobile computing platforms has increased the need for the design of low power consuming integrated circuits. The increase in chip density and clock frequencies due to technology advances has made low power design a critical issue. Low power design is further driven by several other factors such as thermal considerations and environmental concerns. In low-power design for battery driven portable applications, the reduction of peak power, peak power differential, average power and energy are equally important. In this dissertation, we propose a framework for the reduction of these parameters through datapath scheduling at behavioral level. Several ILP based and heuristic based scheduling schemes are developed for datapath synthesis assuming : (i) single supply voltage and single frequency (SVSF), (ii) multiple supply voltages and dynamic frequency clocking (MVDFC), and (iii) multiple supply voltages and multicycling (MVMC). / ABSTRACT: The scheduling schemes attempt to minimize : (i) energy, (ii) energy delay product, (iii) peak power, (iv) simultaneous peak power and average power, (v) simultaneous peak power, average power, peak power differential and energy, and (vi) power fluctuation. A new parameter called "Cycle Power Function" CPF) is defined which captures the transient power characteristics as the equally weighted sum of normalized mean cycle power and normalized mean cycle differential power. Minimizing this parameter using multiple supply voltages and dynamic frequency clocking results in the reduction of both energy and transient power. The cycle differential power can be modeled as either the absolute deviation from the average power or as the cycle-to-cycle power gradient. The switching activity information is obtained from behavioral simulations. Power fluctuation is modeled as the cycle-to-cycle power gradient and to reduce fluctuation the mean power gradient MPG is minimized. / ABSTRACT: The power models take into consideration the effect of switching activity on the power consumption of the functional units. Experimental results for selected high-level synthesis benchmark circuits under different constraints indicate that significant reductions in power, energy and energy delay product can be obtained and that the MVDFC and MVMC schemes yield better power reduction compared to the SVSF scheme. Several application specific VLSI circuits were designed and implemented for digital watermarking of images. Digital watermarking is the process that embeds data called a watermark into a multimedia object such that the watermark can be detected or extracted later to make an assertion about the object. / ABSTRACT: A class of VLSI architectures were proposed for various watermarking algorithms : (i) spatial domain invisible-robust watermarking scheme, (ii) spatial domain invisible-fragile watermarking scheme, (iii) spatial domain visible watermarking scheme, (iv) DCT domain invisible-robust watermarking scheme, and (v) DCT domain visible watermarking scheme. Prototype implementation of (i), (ii) and (iii) are given. The hardware modules can be incorporated in a "JPEG encoder" or in a "digital still camera". / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
|
Page generated in 0.0743 seconds