• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 19
  • 19
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Projeto diferencial de geradores síncronos: o uso de redes neurais artificiais para identificação e correção da saturação dos transformadores de corrente / Differential protection for synchronous generators: the use of artificial neural networks for identification and correction of the saturation of current transformers.

Silva, Rogério Cesar Serapião 09 March 2012 (has links)
Este trabalho tem como objetivo apresentar um algoritmo de proteção diferencial de geradores baseado em Redes Neurais Artificiais (RNAs), que seja robusto e confiável em situações onde os algoritmos padrões podem apresentar dificuldades, como no caso, da saturação de TCs. O algoritmo desenvolvido é constituído por dois módulos principais: a) um módulo de detecção da saturação dos transformadores de corrente (TCs) empregados na proteção diferencial de geradores e; b) um módulo de correção das formas de onda distorcidas devido à saturação dos TCs. Os módulos utilizam RNAs para detectar e corrigir situações onde haja saturação dos TCs, a fim de evitar a má operação da proteção diferencial. O algoritmo foi desenvolvido em ambiente Matlab e validado com base nos dados da modelagem e simulações de um sistema elétrico utilizando o software Alternative Transients Program (ATP). / This work has as objective to present an algorithm for differential protection of generators based on Artificial Neural Networks (ANN), which is robust and reliable in situations where standard algorithms fail, as in the case of Current Transformer (CT) saturation. The algorithm developed consists of two main modules: a) a module to detect saturation of CTs used in differential protection of generators and; b) module to correct distorted waveforms due to CT saturation. The modules use ANNs to detect and correct situations where there is saturation of CTs in order to avoid misoperation of the differential protection. The algorithm was developed using Matlab software and validated based on data modeling and simulations of a power system using the Alternative Transients Program (ATP) software.
12

Projeto diferencial de geradores síncronos: o uso de redes neurais artificiais para identificação e correção da saturação dos transformadores de corrente / Differential protection for synchronous generators: the use of artificial neural networks for identification and correction of the saturation of current transformers.

Rogério Cesar Serapião Silva 09 March 2012 (has links)
Este trabalho tem como objetivo apresentar um algoritmo de proteção diferencial de geradores baseado em Redes Neurais Artificiais (RNAs), que seja robusto e confiável em situações onde os algoritmos padrões podem apresentar dificuldades, como no caso, da saturação de TCs. O algoritmo desenvolvido é constituído por dois módulos principais: a) um módulo de detecção da saturação dos transformadores de corrente (TCs) empregados na proteção diferencial de geradores e; b) um módulo de correção das formas de onda distorcidas devido à saturação dos TCs. Os módulos utilizam RNAs para detectar e corrigir situações onde haja saturação dos TCs, a fim de evitar a má operação da proteção diferencial. O algoritmo foi desenvolvido em ambiente Matlab e validado com base nos dados da modelagem e simulações de um sistema elétrico utilizando o software Alternative Transients Program (ATP). / This work has as objective to present an algorithm for differential protection of generators based on Artificial Neural Networks (ANN), which is robust and reliable in situations where standard algorithms fail, as in the case of Current Transformer (CT) saturation. The algorithm developed consists of two main modules: a) a module to detect saturation of CTs used in differential protection of generators and; b) module to correct distorted waveforms due to CT saturation. The modules use ANNs to detect and correct situations where there is saturation of CTs in order to avoid misoperation of the differential protection. The algorithm was developed using Matlab software and validated based on data modeling and simulations of a power system using the Alternative Transients Program (ATP) software.
13

Integrace pomocného zdroje do nákladního automobilu / Electrical integration of an auxiliary power units for truck

Pšenčík, Petr January 2014 (has links)
This thesis aims to hardware and software integration of solid oxide fuel cell into a power generator for truck application. Requirements for individual components are defined, especially for main DC/DC converter which allows charging the battery pack with output from fuel cell. Then suitable components are found on the market and incorporated into hardware layout. Operation strategy with safety concept is proposed and consequently integrated into PLC in LASAL Class 2 environment. This is followed by definition of future work which includes testing and possible changes in components. Result is hardware and software design which allows construction of prove-of-concept prototype.
14

Oscilační generátor s mechanickým resonančním členem / Oscillatory Power Generator Base on Mechanical Resonant Element

Mihalík, Vlastimil January 2009 (has links)
This work deals with the power supply of wireless sensors. When using a wireless sensor is desirable application of alternative energy sources, because the primary cells or batteries may reduce the extent or length of service of the sensor itself. Ambient energy can be used as a suitable alternative source. This energy must be in an appropriate form, which allows its conversion to electric energy. These appropriate, already used types include: solar en., temperature gradient en., en. of flowing liquids, vibration, etc. The advantage of vibrations is its presence in almost all mechanical systems. One of the possibilities for using the vibration of machine systems for power supply wireless sensors is using the vibration power generator with oscillating component. The generator must be designed so that its resonance frequency coincides with the frequency of vibration in the machine system. This method can be used only if the machinery system vibrations at least partially constant. Another option is to use the vibrations caused by, for example, transit transport, or different step acting factor. In this case, it is desirable that the generator is designed with variable resonant frequency, which can partly be achieved, for example, integrating several oscillating component in the body of generator. After the general analysis of the problem, graduation theses will be concerned with the possibility of use of energy from the short damped oscillation and step impulse. Focusing on a proposal of multi-element structures.
15

Thermal Analysis of a Sea Wave Generator

Quijada, Ezequiel January 2017 (has links)
Wave power has been increasing the interest of many researchers looking for alternative sustainable energy sources since the reserves have proved to be capable of satisfying a considerable percentage of the world´s energy demands. This option has not been adopted as a sustainable source since there are some challenges in the process of designing a low cost device that converts the kinetic energy of the waves into electric energy and that could still be efficient enough to be competitive against other options. A new proposal from Anders Hagnestål looks like a very promising way of moving forward in this field. The structure of this newly proposed generator includes neodymium magnets that at temperatures over 60°C might suffer irreversible demagnetization, compromising the normal functioning of the machine. Because of the electrical losses in iron components, overheating is a possibility that must be studied. The aim of this study is to find the temperature distribution of the components that are subject to changing magnetic fields (where the losses will occur). This will be done for a variety of cases regarding environmental and working conditions with the purpose of determining if the generator will need a cooling technique to avoid damage to the magnets. The studied structure consists of a stator and a translator conformed by iron, FR4, glass fiber and, of course, the magnets. The task at hand was carried out first through a one-dimensional analytical model, then through a two-dimensional analytical model and finally by means of simulations on Comsol Multiphysics (Computer-Aided-Engineering software). All of the aforementioned methods implicate assumptions that deviate from reality, but are still useful for the task at hand. Results from the 1D calculation turned out to be unreliable due to the numerous approximations but helped to prove and understand the effect of each of the environmental conditions on the temperature distribution. On the other hand, the 2D calculations and the simulations had a very good agreement which provides some reliability. Furthermore, said results showed that the components might even reach temperatures as high as 380°C under certain conditions. As this number is clearly over the safe limit of the magnets, it was concluded that cooling techniques are needed to ensure the safety of the generator. After some discussion with Hagnestål, cooling methods were proposed. In addition to this, the seemingly most appropriate option was pointed out with the intention of achieving a low-enough temperature and keeping the costs as low as possible. This alternative was a combination of modifying geometric parameters (which would ultimately reduce heat generation) and inducing a low velocity air flow. / Vågkraft är en hittills outnyttjad förnybar energikälla som i framtiden kan tillgodose i storleksordningen 10 % av världens energibehov, om de tekniska utmaningarna kan lösas så att vågkraft kan levereras till konkurrenskraftiga priser. Därmed finns också ett starkt intresse från både akademi och näringsliv att lösa dessa utmaningar. Anders Hagnestål håller på att utveckla en ny linjär generatortyp som enligt beräkningar slår alla befintliga lösningar för effektomvandling för vågkraft med bred marginal. Maskinen har dock komplex geometri, och det är svårt att beräkna dess prestanda. Maskinen innehåller neodymmagneter, vilka kan avmagnetiseras om de blir för varma där 60°C kan ses som en gräns då magneterna börjar påverkas. Om magneterna avmagnetiseras blir maskinen svagare. Eftersom magneterna upphettas av virvelströmmar i magneterna och förluster i omgivande elektroplåt, är det av intresse att göra en termisk analys av maskinen vilket är syftet med detta examensarbete. Målet är att beräkna temperaturutbredningen i maskinens olika delar vid olika driftsfall, och se om man behöver tillföra extern kylning av maskinen för att skydda magneterna. Maskinen består av en translator som omsluter den inre statorn där magneterna är lokaliserade, vilka är byggda av fiberkompositer, elektroplåt, rostfritt stål och neodymmagneter. Beräkningar gjordes först med en endimensionell analytisk modell, därefter med en tvådimensionell analytisk modell och slutligen med numeriska beräkningar i 2D med det kommersiella finita elementmetodberäkningsprogrammet Comsol Multiphysics. Samtliga dessa modeller har avvikelser från det verkliga fallet, men är ändå användbara och ger en fingervisning om hur den termiska situationen för maskinen kan se ut. 1D-beräkningarna visade sig innehålla lite för grova approximationer för att ge pålitliga resultat, men gav en del intuitiv insikt om problemet. Den analytiska 2D-beräkningen stämde bra överens med Comsol-beräkningen, vilket indikerar att beräkningarna är korrekta. Resultaten visade på mycket höga temperaturer i vissa driftsfall utan kylsystem, 380 °C, vilket är en indikator på att antingen någon form av kylning förmodligen behövs, i.a.f. i en del driftsfall, eller att värmeförlusterna i den delen av generatorn behöver minskas genom t.ex. att pollängden ökas. En kombination av luftflöden med låg hastighet och förändrad geometri har föreslagits i examensarbetet för att minska temperaturen.
16

Controle e supervisão de fonte ininterrupta de energia híbrida / Control and supervision of hybrid Uninterrupted power supply

Tibola, Jonas Roberto 13 February 2017 (has links)
This work presents contributions to the modeling, control and management of an hybrid uninterrupted power supply (UPS) based on Otto cycle power generator set and lead acid battery bank. The proposed configuration is called hybrid due to the presence of two energy storage elements: i) the fuel fed the Otto cycle internal combustion engine (ICE) of the generator set and ii) a lead acid battery bank, which can be recharged from the grid or from the generator. With the hybridization it is possible to add up the advantages of UPS’s such as uninterrupted power supply and high output energy quality with the advantages of power generator sets, such as high autonomy and lower installation cost for high autonomy. In addition, with the hybrid topology it is possible to explore degrees of freedom that do not exist in the independent configurations, such as: i) variable speed operation and ii) start-stop operation of the MCI in order to reduce consumption/ emissions in lower loads, (iii) use of Otto cycle engine with lower cost in relation to a Diesel ICE. The hybrid UPS is composed of an Otto cycle internal combustion engine (ICE), a three-phase/three-wire rectifier, which can be connected via contactors to the grid, or to the permanent magnet synchronous generator (PMSG), a battery bank connected to the DC bus through a bi-directional boost converter, and a three-phase/four-wire inverter at the output. Experimental results are provided indicating that variable speed operation can achieve a reduction of up to 32% in specific fuel consumption, depending on the load range. For start-stop operation, the reduction in specific fuel consumption can reach up to 39%, depending on the load range. / Este trabalho apresenta contribuições a modelagem, controle e gerenciamento de uma fonte ininterrupta de energia (UPS) híbrida baseada em grupo motor ciclo Otto e bateria chumbo ácido. A configuração proposta é denominada híbrida devido a presença de dois armazenadores de energia: i) o combustível para alimentar o motor a combustão interna (MCI) ciclo Otto do grupo motor gerador e ii) um banco de baterias chumbo ácido, a qual pode ser recarregado pela rede ou pelo gerador. Com a hibridização é possível agregar as vantagens das UPSs tais como, ininterruptibilidade de fornecimento de energia e alta qualidade de energia da tensão de saída, com as vantagens dos grupos motores geradores, tais como, elevada autonomia e menor custo de instalação para autonomias elevadas. Além disso, com a topologia híbrida é possível explorar graus de liberdade não existentes nas configurações independentes, tais como: i) utilização de velocidade variável e ii) operação em regime start-stop no MCI afim de reduzir consumo/emissões em baixas cargas, iii) utilização de motor ciclo Otto com menor custo em relação a um MCI Diesel. A UPS híbrida é composta por um motor a combustão interna (MCI), um retificador trifásico a três/quatro fios, o qual pode ser conectado através de contatoras à rede, ou ao gerador síncrono de ímãs permanente (PMSG), um banco de baterias conectado ao barramento através de um conversor boost bidirecional, e um inversor a quatro fios na saída. Resultados experimentais são apresentados indicando que a operação em velocidade variável pode alcançar um redução de até 32% no consumo específico de combustível, dependendo a faixa de carga. Já para a operação em regime start-stop a redução no consumo específico de combustível pode alcançar até 39%, dependendo da faixa de carga.
17

Mechatronický návrh elektromagnetického vibračního generátoru / Mechatronic Proposal of Electromagnetic Vibration Power Generator

Jurosz, Pavel January 2009 (has links)
This thesis deals with modifications to the construction of vibration-to-electricity energy converter, which is one of possible solutions to problem of sustainable and stable energy source for wireless sensor supply. Upon the exploration of the present state of this problem, new construction of generator is proposed. The aim of this proposal is to enhance the existing generator properties with respect to retention of its dimensions and its weight. Results obtained by simulations of model with proposed parameters are presented and analysed.
18

METODY MĚŘENÍ ULTRAKRÁTKÝCH NEPERIODICKÝCH ELEKTROMAGNETICKÝCH IMPULSŮ / METHODS FOR MEASUREMENT OF ULTRA-SHORT SINGLE-SHOT ELECTROMAGNETIC PULSES

Drexler, Petr January 2007 (has links)
This thesis deals with the aspects of methods for pulsed high-level EM quantities measurement. Methods for current and voltage measurement in pulsed power generator and power measurement in pulse microwave generator are discussed. New approaches to single-shot measurement methods application are proposed. The theoretical analysis of suitable sensor designs is performed. The magneto-optic measurement method has been experimentally realized. On the basis of experimental results a fiber-optic current sensor has been designed and theoretically analyzed. For identification and measurement of the free-space electromagnetic pulse a combined calorimetric sensor has been designed and built.
19

THERMOELECTRIC BUILDING ENVELOPE: MATERIAL CHARACTERIZATION, MODELING, AND EXPERIMENTAL PERFORMANCE EVALUATION

Xiaoli Liu (5930732) 20 July 2022 (has links)
<p>In the United States, buildings are responsible for almost 40% of the country’s total energy consumption and 38% of the total greenhouse gas emissions. Researchers are constantly seeking sustainable and efficient energy generation solutions for buildings as society continues to cope with the intensifying energy crisis and environmental deterioration. Thermoelectric technology is one such solution that potentially can lead to significant energy recovery and conversion between waste or excess thermal energy and electrical energy. One promising application is integrating thermoelectric materials into the building envelope (TBE) for power generation and building heating and cooling without transporting energy among subsystems and refrigerant use. TBE can combine structural support and thermal storage with power generation and thermal-activated cooling and heating, thereby contributing to sustainable living and energy. </p> <p>TBE technology is still in its early development stages. This dissertation aimed to develop a fundamental understanding of the characteristics, behaviors, operation, and control of TBE systems as energy-efficient measures for thermal energy harvesting and thermal comfort regulation and to address the significant research gaps concerning high-conversion efficiency materials and optimal module configuration as well as system deployment related to real-world applications. Accordingly, this dissertation focused on the following three key objectives: (1) development and characterization of new thermoelectric composite materials; (2) identification of optimal designs and controls of TBE and established mathematical models for performance simulation; and (3) quantification of the energy-saving benefits of TBE. </p> <p>The following five aspects specifically were investigated:</p> <p>(1)<em> Material development and characterization</em>. New thermoelectric cement composites were developed with cement and various additives, material concentrations, and fabrication methods in the laboratory. Their thermoelectric properties (e.g., Seebeck coefficient, thermal conductivity, electrical conductivity, power factor, and the figure of merit) were measured simultaneously and characterized at 300–350 K.</p> <p>(2)<em> Module evaluation.</em> Commercially available thermoelectric modules (TEMs) were assessed using well-designed test apparatus in both the heat pumping and power generation modes. The test results validated the numerical model, which assisted with performance comparison and material selection between cement-based and commercial TEMs for the TBE prototype.</p> <p>(3)<em> Prototype assessment. </em>A convective TBE prototype and a radiant TBE prototype were designed, assembled, and evaluated in a pair of controlled testing chambers. The TBE’s surface temperature, thermal capacity, and COP were assessed under summer and winter conditions. </p> <p>(4)<em> Prototype modeling. </em>The first-principle-based numerical models of both the convective and radiant TBE prototypes were developed in Modelica. The modeling results indicated good agreement with the experimental data. The verified models were used to study the impacts of the design parameters and operating conditions on the heat pumping performance of TBE.</p> <p>(5)<em> System simulation. </em>A TBE building system model was established by integrating the TBE prototype model within a building’s heat balance model, considering the building construction, climate condition, power control, etc. Its seasonal performance under various climate conditions was studied to identify the potential optimal operation and energy savings. </p> <p>This dissertation confirmed several key findings in the areas of material development, system design and operation, and energy savings. The TBE achieved higher efficiency with a heat pump for heating than for cooling generally. The TBE heating system performed better than a conventional electric heater (efficiency assumed at 0.9). The measures that improved TBE heating efficiency were enhancing the material’s thermoelectric properties, optimizing the geometry and number of TEMs, and improving the boundary heat transfer of TEMs. </p> <p>This dissertation concluded that the TBE system is a promising alternative to conventional heating systems in buildings. Furthermore, the knowledge gained will strengthen the understanding of thermoelectrics in the building domain and guide further development in TBE, as well as facilitate the operation of net-zero energy and carbon-neutral buildings. </p>

Page generated in 0.206 seconds