• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 11
  • 7
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 85
  • 85
  • 76
  • 61
  • 40
  • 27
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

MESH : a maximum power point tracker for a wireless sensor network

Kobdish, Stephen Matthew 21 February 2011 (has links)
Energy harvesting is becoming increasingly important in low-power applications where energy from the environment is used to power the system alone, or to supplement a battery. For example, pulse oximeter sensors inside helmets of road racing cyclists are powered by the sun. These sensors have become smaller and more practical without the limitation of a finite energy supply. Harvested energy from an energy transducer (solar, piezoelectric, etc.) must be maximized to ensure these devices can survive periods where environmental energy is scarce. The conversion process from the transducer to usable power for the device is not perfectly efficient. Specifically, the output voltage of a solar cell is a function of the light intensity, and by extension the load it powers. A small perturbation of the light source quickly diminishes the available power. The wasted power reduces the energy available for the application, and can be improved using an approach called maximum power point tracking (MPPT). This technique maximizes harvesting efficiency by dynamically impedance matching the transducer to its load. This report introduces the Maximum Efficient Solar Harvester (MESH), an MPPT algorithm tuned for a specific Wireless Sensor Network (WSN) application. MESH specifically controls the operation of the DC-DC converter in a solar power management unit (PMU). The control is done by monitoring the available light and feeding that information to choose the optimal operating point DC-DC converter. This operating point has a direct dependency on the overall efficiency of the system. For MESH to be practical, the cost and power overhead of adding this functionality must be assessed. Empirical results indicate that MESH improves the maximum efficiency of the popular Texas Instruments (TI) RF2500-SEH WSN platform by an average of 20%, which far exceeds the power overhead it incurs. The cost is also found to be minimal, as WSN platforms already include a large portion of the hardware required to implement MESH. The report was done in collaboration with Shahil Rais. It covers the hardware components and the bench automation environment; Rais's companion report focuses on software implementation and MESH architecture definition. / text
12

Μελέτη και κατασκευή αυτόνομου φ/β συστήματος χαμηλής ισχύος - λειτουργία στο σημείο μέγιστης αποδιδόμενης ισχύος

Τσιμάρας, Βασίλειος 05 February 2015 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται την ανάλυση και κατασκευή ενός αυτόνομου φωτοβολταϊκού συστήματος, το οποίο περιλαμβάνει αντλία. Ταυτόχρονα διενεργείται μελέτη ώστε το σύστημα να λειτουργεί στο σημείο μέγιστης αποδιδόμενης ισχύος. Η εργασία αυτή εκπονήθηκε στο Εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών. Σκοπός είναι η οδήγηση αντλίας χαμηλής ισχύος από φωτοβολταϊκό σύστημα, αξιοποιώντας όσο το δυνατόν πιο αποτελεσματικά την διαθέσιμη ηλιακή ακτινοβολία. Για να συμβεί αυτό παρεμβάλλεται μεταξύ των δύο στοιχείων μετατροπέας συνεχούς τάσης. Παράλληλα υλοποιείται κύκλωμα ελέγχου, ικανό να οδηγήσει το σύστημα στο μέγιστο σημείο ισχύος μέσω μεταβολής του λόγου κατάτμησης του μετατροπέα. Αρχικά αναλύεται το φωτοβολταϊκό φαινόμενο. Σαν αποτέλεσμα αυτής της ανάλυσης προκύπτει το ηλεκτρικό ισοδύναμο ενός φωτοβολταϊκού πίνακα, ο οποίος αποτελεί την πηγή ισχύος του συστήματος. Αναπτύσσεται το αντίστοιχο μοντέλο σε προγραμματιστικό περιβάλλον, το οποίο προσαρμόζεται ώστε τα χαρακτηριστικά του να αναπαριστούν πραγματικό πίνακα. Στη συνέχεια διερευνάται ο τρόπος που αλληλεπιδρά η πηγή ισχύος όταν συνδέεται σε φορτίο. Σύμφωνα με τα αποτελέσματα επιλέγεται το είδος του μετατροπέα που θα χρησιμοποιηθεί. Ακολουθεί η διαστασιολόγηση του μετατροπέα και η μοντελοποίηση του. Το επόμενο βήμα αποτελείται από την ανάλυση του κυκλώματος ελέγχου του συστήματος καθώς και τη μοντελοποίηση μηχανής συνεχούς ρεύματος συνδεδεμένη ως αντλία. Κατόπιν συνδέονται όλα τα μοντέλα και εξετάζεται η συνολική συμπεριφορά του συστήματος σε περιβάλλον SIMULINK. Τέλος κατασκευάζονται ο μετατροπέας και το κύκλωμα ελέγχου και αξιολογείται η συμπεριφορά τους βάσει πειράματος σε εργαστηριακές συνθήκες. / --
13

ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV

Prayaga, Krishna Venkatesh 01 January 2010 (has links)
Gato del Sol III, was powered by a solar array of 480 Silicon mono-crystalline photovoltaic cells. Maximum Power Point trackers efficiently made use of these cells and tracked the optimal load. The cells were mounted on a fiber glass and foam core composite shell. The shell rides on a lightweight aluminum space frame chassis, which is powered by a 95% efficient brushless DC motor. Gato del Sol IV was the University of Kentucky Solar Car Team’s (UKSCT) entry into the American Solar Car Challenge (ASC) 2010 event. The car makes use of 310 high density lithium-polymer batteries to account for a 5 kWh pack, enough to travel over 75 miles at 40 mph without power generated by the array. An in-house battery protection system and charge balancing system ensure safe and efficient use of the batteries. Various electrical sub-systems on the car communicate among each other via Controller Area Network (CAN). This real time data is then transmitted to an external computer via RF communication for data collection.
14

Μελέτη καθορισμού των βέλτιστων σημείων λειτουργίας φωτοβολταϊκών συστημάτων

Κοσμάς, Χρήστος 11 January 2011 (has links)
Η παρούσα διπλωματική έχει ως σκοπό να διερευνήσει τους τρόπους με τους οποίους θα μπορέσουμε να λειτουργήσουμε φωτοβολταϊκά συστήματα στο βέλτιστο σημείο τους, στο σημείο μέγιστης ισχύος. Στο πρώτο κεφάλαιο αναφέρονται γενικά χαρακτηριστικά, αρχές λειτουργίας και σχέσεις μοντελοποίησης του φωτοβολταϊκού πλαισίου. Στο δεύτερο κεφάλαιο εξετάζονται οι διατάξεις Ανίχνευσης Μέγιστου Σημείου Ισχύος (Maximum Power Point Tracking) και δίνεται βαρύτητα στις 3 βασικότερες τοπολογίες των μετατροπέων: DC-DC μετατροπέας υποβιβασμού τάσης (step down ή buck DC-DC converter), DC-DC μετατροπέας ανύψωσης τάσης (step up ή boost DC-DC converter), μικτός DC-DC μετατροπέας (step down/up ή buck-boost DC-DC converter). Στο τρίτο κεφάλαιο περιγράφεται αναλυτικά ο μικτός DC-DC μετατροπέας και όλες οι περιπτώσεις λειτουργίας του (λειτουργία συνεχούς ρεύματος, οριακή λειτουργία, ασυνεχής λειτουργία) Στο τέταρτο κεφάλαιο αναλύονται οι αρχές λειτουργίας και οι βασικές ιδιότητες των αλγόριθμων αναζήτησης MPP. Κατηγοριοποιούνται σε ομάδες ενώ αναφέρονται τα κύρια πλεονεκτήματα και μειονεκτήματα. Αναφορικά κάποιοι από αυτούς είναι: ο αλγόριθμος διατάραξης και παρατήρησης, ο αλγόριθμος αυξητικής αγωγιμότητας και ο αλγόριθμος παρασιτικής χωρητικότητας. Στο πέμπτο και τελευταίο κεφάλαιο γίνεται προσομοίωση στον υπολογιστή ενός φωτοβολταϊκού συστήματος με DC-DC μετατροπέα και σταθερό ωμικό φορτίο με τη βοήθεια του λογισμικού Matlab/Simulink. Γίνεται υπολογισμός των βασικών στοιχείων του και εξάγονται οι γραφικές παραστάσεις για τη λειτουργία του σε διαφορετικές καταστάσεις ηλιακής ακτινοβολίας και θερμοκρασίας. Τέλος, από την προσομοίωση φαίνονται τα αποτελέσματα στην απόδοση του φωτοβολταϊκού όταν μεταβάλουμε το βήμα διαταραχής της σχετικής διάρκειας αγωγής και το χρόνο δειγματοληψίας. / -
15

Σχεδίαση εγκαταστάσεων παραγωγής ηλεκτρικής ενέργειας από ΑΠΕ (φωτοβολταϊκών συστημάτων σε λειτουργία μέγιστης απόδοσης) / Designing of renewable energy systems (maximum power point tracker)

Κρομμύδας, Κωνσταντίνος 21 October 2011 (has links)
Στην παρούσα διπλωματική εργασία προσομοιώθηκε μέσω του προγράμματος Simulink ένα φωτοβολταϊκό σύστημα το οποίο αποτελούνταν από ένα φωτοβολταϊκό πλαίσιο των 60W, έναν DC/DC μετατροπέα Buck-Boost και ένα φορτίο. Στη συνέχεια εφαρμόσθηκαν τέσσερις διαφορετικές μέθοδοι ελέγχου στο φωτοβολταϊκό σύστημα με στόχο να λειτουργεί στο σημείο απόδοσης μέγιστης ισχύος (MPP) και συγκρίναμε τα αποτελέσματα της κάθε μια μεθόδου. Οι μέθοδοι που εφαρμόσθηκαν ήταν η μέθοδος Ανοιχτού Κυκλώματος (Open Voltage Method), η μέθοδος Διαταραχής και Παρατήρησης (Perturb and Observe Method), η μέθοδος Διαφορικής Αγωγιμότητας (Incremental Conductance) και προτείναμε και μια βελτιωμένη μέθοδο Διαταραχής και Παρατήρησης (Improved Perturb and Observe Method). / In this diploma thesis a photovoltaic system was simulated with the program Simulink. The photovoltaic system consisted of a photovoltaic panel of 60W, a buck-boost DC/DC converter and a load. Then four different control methods where applied so that the photovoltaic system would operate at the maximum power point (MPP) and the results of each control method were compared. The control methods which were applied were the Open Voltage Method, the Perturb and Observe Method, the Incremental Conductance Method and we proposed an improved Perturb and Observe Method.
16

MAXIMUM POWER POINT TRACKING FOR PHOTOVOLTAIC APPLICATIONS BY USING TWO-LEVEL DC/DC BOOST CONVERTER

Moamaei, Parvin 01 August 2016 (has links)
Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.
17

Power Management IC for Single Solar Cell

January 2015 (has links)
abstract: A single solar cell provides close to 0.5 V output at its maximum power point, which is very low for any electronic circuit to operate. To get rid of this problem, traditionally multiple solar cells are connected in series to get higher voltage. The disadvantage of this approach is the efficiency loss for partial shading or mismatch. Even as low as 6-7% of shading can result in more than 90% power loss. Therefore, Maximum Power Point Tracking (MPPT) at single solar cell level is the most efficient way to extract power from solar cell. Power Management IC (MPIC) used to extract power from single solar cell, needs to start at 0.3 V input. MPPT circuitry should be implemented with minimal power and area overhead. To start the PMIC at 0.3 V, a switch capacitor charge pump is utilized as an auxiliary start up circuit for generating a regulated 1.8 V auxiliary supply from 0.3 V input. The auxiliary supply powers up a MPPT converter followed by a regulated converter. At the start up both the converters operate at 100 kHz clock with 80% duty cycle and system output voltage starts rising. When the system output crosses 2.7 V, the auxiliary start up circuit is turned off and the supply voltage for both the converters is derived from the system output itself. In steady-state condition the system output is regulated to 3.0 V. A fully integrated analog MPPT technique is proposed to extract maximum power from the solar cell. This technique does not require Analog to Digital Converter (ADC) and Digital Signal Processor (DSP), thus reduces area and power overhead. The proposed MPPT techniques includes a switch capacitor based power sensor which senses current of boost converter without using any sense resistor. A complete system is designed which starts from 0.3 V solar cell voltage and provides regulated 3.0 V system output. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2015
18

Aplicación hipermedial del programa Power Point en el aprendizaje de la campimetría aplicada.

López Valdovinos, Ángela January 2005 (has links)
No description available.
19

Metody pro dosažení maximálního výkonu FV modulů / Methods for achievement of maximum power of PV modules

Svrček, Milan January 2017 (has links)
This diploma thesis deals with the tracking of the maximum power point for photovoltaic panels and the methods used to achieve it. On this basis, two methods were designed and programmed and subsequently tested on three types of photovoltaic panels. In conclusion methods were appraised.
20

Fuzzy Logic Based Module-Level Power Electronics for Mitigation of Rapid Cloud Shading in Photovoltaic Systems

Belcher, Rachel Beverly 09 October 2020 (has links)
A module-level DC optimization proof of concept architecture is proposed to increase the efficiency of photovoltaic (PV) strings by minimizing the negative effects of shading caused by intermittent cloud cover while reducing cloud induced fast frequency fluctuations. The decentralized inverter approach combines the benefits of string and micro-inverter technology. This device can be affixed to pre-existing or new systems and operates in compliance with IEEE 1547 and California rule 21 standards by operating in maximum power point tracking (MPPT) or curtailment mode whenever necessary. The modular level device encapsulates three individual processes: an optimization engine to determine minimum power requirements, a fuzzy logic controller (FLC) to eliminate the effect of passing cloud cover, and a voltage regulation stage to monitor and appropriately adjust the output voltage of the device. Ramp rate reduction was accomplished using adaptive fuzzy logic control with a heuristic rule base inference engine. The modular design can be affixed to grid connected or islanded systems allowing for operation in regulated and variable load conditions. Matlab/Simulink 2019a was used to design and simulate the proof of concept model to verify the resiliency to partial shading, reduction of ramp rates during passing cloud coverage, and optimal output voltage for each panel while maintaining a constant DC link voltage of 120 V. This proof of concept has been successfully validated therefore further testing will be performed for various irradiance conditions.

Page generated in 0.043 seconds