• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 17
  • 17
  • 9
  • 9
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 192
  • 47
  • 35
  • 27
  • 25
  • 25
  • 23
  • 22
  • 21
  • 20
  • 17
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Multi-Objective Control for Physical and Cognitive Human-Exoskeleton Interaction

Beiter, Benjamin Christopher 09 May 2024 (has links)
Powered exoskeletons have the potential to revolutionize the labor workplace across many disciplines, from manufacturing to agriculture. However, there are still many barriers to adoption and widespread implementation of exoskeletons. One major research gap of powered exoskeletons currently is the development of a control framework to best cooperate with the user. This limitation is first in understanding the physical and cognitive interaction between the user and exoskeleton, and then in designing a controller that addresses this interaction in a way that provides both physical assistance towards completing a task, and a decrease in the cognitive demand of operating the device. This work demonstrates that multi-objective, optimization-based control can be used to provide a coincident implementation of autonomous robot control, and human-input driven control. A parameter called 'acceptance' can be added to the weights of the cost functions to allow for an automatic trade-off in control priority between the user and robot objectives. This is paired with an update function that allows for the exoskeleton control objectives to track the user objectives over time. This results in a cooperative, powered exoskeleton controller that is responsive to user input, dynamically adjusting control autonomy to allow the user to act to complete a task, learn the control objective, and then offload all effort required to complete the task to the autonomous controller. This reduction in effort is physical assistance directly towards completing the task, and should reduce the cognitive load the user experiences when completing the task. To test the hypothesis of whether high task assistance lowers the cognitive load of the user, a study is designed and conducted to test the effect of the shared autonomy controller on the user's experience operating the robot. The user operates the robot under zero-, full-, and shared-autonomy control cases. Physical workload, measured through the force they exert to complete the task, and cognitive workload, measured through pupil dilation, are evaluated to significantly show that high-assistance operation can lower the cognitive load experienced by a user alongside the physical assistance provided. Automatic adjustment in autonomy works to allow this assistance while allowing the user to be responsive to changing objectives and disturbances. The controller does not remove all mental effort from operation, but shows that high acceptance does lead to less mental effort. When implementing this control beyond the simple reaching task used in the study, however, the controller must be able to both track to the user's desired objective and converge to a high-assistance state to lead to the reduction in cognitive load. To achieve this behavior, first is presented a method to design and enforce Lyapunov stability conditions of individual tasks within a multi-objective controller. Then, with an assumption on the form of the input the user will provide to accomplish their intended task, it is shown that the exoskeleton can stably track an acceptance-weighted combination of the user and robot desired objectives. This guarantee of following the proper trajectory at corresponding autonomy levels results in comparable accuracy in tracking a simulated objective as the base shared autonomy approach, but with a much higher acceptance level, indicating a better match between the user and exoskeleton control objectives, as well as a greater decrease in cognitive load. This process of enforcing stability conditions to shape human-exoskeleton system behavior is shown to be applicable to more tasks, and is in preparation for validation with further user studies. / Doctor of Philosophy / Powered exoskeletons are robots that can be worn by users to physically aid them in accomplishing tasks. These robots differ in scale, from single-joint devices like powered ankle supports or lower-back braces for lifting, to large, multi-joint devices with a broad range of capabilities and potential applications. These multi-joint exoskeletons have been used in many applications such as medical rehabilitation robots, and labor-assisting devices for enhancing strength and avoiding injury. Broader use and adoption in industry could have a great positive impact on the experience of workers performing any heavy-labor tasks. There are still barriers to widespread adoption, however. When closely interacting with machinery like a powered exoskeleton, workers want guarantees of saftey, trust, and cooperation that current exoskeletons have not been able to provide. In fact, studies have shown that industrial devices capable of providing significant assistive force when accomplishing a task, also tend to impart additional, uncomfortable disturbance forces on the user. For example, a lower-body exoskeleton meant to help in lifting tasks might make the simple act of walking more difficult, both physically and mentally. There is a need for exoskeletons that are intuitively cooperative, and can provide both physical assistance towards completing a task and cognitive assistance that makes coordinating with the human user easier. In this dissertation we examine the control problem of powered exoskeletons. In the past, many powered exoskeleton controllers are direct, scripted controllers with exact objectives, or actions tied only to human input. To go beyond this, we leverage "multi-objective-control", originally designed for humanoid robots, which is capable of controlling the robot to accomplish multiple goals at the same time. This approach is the base on which a more complex controller can be created. We show first that the multi-objective control can be used to achieve human desired actions and robot autonomous control tasks at the same time, with a parameter to trade-off which actor, the human or the robot, has the priority control at that time. This framework has the capacity to allow the human to instruct the robot in tasks to accomplish, and then robot can fully mimic the user, offloading the physical effort required to accomplish the task. It is proposed that this offloading of effort from the user will also lower the cognitive load the user is under when actively commanding the exoskeleton. To test this hypothesis, a user study is conducted where human operators work with an upper-body powered exoskeleton to complete a simple reaching task. This study shows that on average, the more assistance the exoskeleton provides to the user, the lower their mental demand is. Additionally, when responding to new challenges or sudden disturbances, the robot can easily cooperate, balancing its own autonomy with the user's to allow the user to respond as they need to their changing environment, then resume active assistance when the change is resolved. Finally, to guarantee that the exoskeleton responds quickly and accurately to the user's intentions, a new strategy is derived to update the robot's internal objectives to match the users' goals. This strategy is based on the assumption that the exoskeleton knows what type of task the user is trying to complete. If this is true, then the exoskeleton can estimate the users objectives from the actions they task, and ensure assistance towards completing the task. This control design is proven in simulation, and in preparation for followup studies to evaluate the user experience of this improved strategy.
32

Dynamic Stability Control of Front Wheel Drive Wheelchairs Using Solid State Accelerometers and Gyroscopes

Wolm, Patrick January 2009 (has links)
While the active dynamic stability of automobiles has increased over the past 17 years there have been very few similar advances made with electrically powered wheelchairs. This lack of improvement has led to a long standing acceptance of less-than-optimal stability and control of these wheelchairs. Accidents due to loss of stability are well documented. Hence, the healthcare industry has made several efforts for improved control of electric powered wheelchairs (EPWs) to provide enhanced comfort, safety and manoeuvrability at a lower cost. In response, an area of stability control was identified that could benefit from a feedback control system using solid state sensors. To design an effective closed–loop feedback controller with optimal performance to overcome instabilities, an accurate model of wheelchair dynamics needed to be created. Such a model can be employed to test various controllers quickly and repeatedly, without the difficulties of physically setting a wheelchair up for each test. This task was one central goal of this research. A wireless test-bed of a front wheel drive (FWD) wheelchair was also developed to validate a dynamic wheelchair model. It integrates sensors, a data control system, an embedded controller, and the motorised mechanical system. The wireless communication ensures the integrity of sensor data collected and control signals sent. The test-bed developed not only facilitates the development of feedback controllers of motorised wheelchairs, but the collected data can also be used to confirm theories of causes of dynamic instabilities. The prototype test-bed performed the required tasks to satisfaction as defined by the sponsor. Data collected from live tests in which the test-bed followed set patterns, was processed and analysed. The patterns were designed to induce instability. The analysis revealed that an occupied wheelchair is more stable than an unoccupied wheelchair, disproving an initial instability theory proposed in this research. However, a proximal theory explaining over-steer is confirmed. Two models of the FWD test-bed were created. First, a dynamic model inherited from prior research, based on equations of motion was tested and enhanced based on measured data. However, even with alterations to correct parameter values and variables in the equations, a complete model validation was not possible. Second, a kinematic model was created with a factor to compensate for dynamics not normally accounted in kinematic models. The kinematic model was partially validated versus the measured data. Although, still highly accurate, there is room for improvement in this model. Both models contained a sub-system drive motor model, to account for input forces to the FWD wheelchair system model, which is fully validated.
33

Development of a Laboratory Verified Single-Duct VAV System Model with Fan Powered Terminal Units Optimized Using Computational Fluid Dynamics

Davis, Michael A. 2010 August 1900 (has links)
Single Duct Variable Air Volume (SDVAV) systems use series and parallel Fan Powered Terminal Units to control the air flow in conditioned spaces. This research developed a laboratory verified model of SDVAV systems that used series and parallel fan terminal units where the fan speeds were controlled by either Silicon Controlled Rectifiers (SCR) or Electronically Commutated Motors (ECM) motors. As part of the research, the model was used to compare the performance of the systems and to predict the harmonics generated by ECM systems. All research objectives were achieved. The CFD model, which was verified with laboratory measurements, showed the potential to identify opportunities for improvement in the design of the FPTU and accurately predicted the static pressure drop as air passed through the unit over the full operating range of the FPTU. Computational fluid dynamics (CFD) models of typical a FPTU were developed and used to investigate opportunities for optimizing the design of FPTUs. The CFD model identified key parameters required to conduct numerical simulations of FPTU and some of the internal components used to manufacture the units. One key internal component was a porous baffle used to enhance mixing when primary air and induced air entered the mixing chamber. The CFD analysis showed that a pressure-drop based on face velocity model could be used to accurately predict the performance of the FPTU. The SDVAV simulation results showed that parallel FPTUs used less energy overall than series systems that used SCR motors as long as primary air leakage was not considered. Simulation results also showed that series ECM FPTUs used about the same amount of energy, within 3 percent, of parallel FPTU even when leakage was not considered. A leakage rate of 10 percent was enough to reduce the performance of the parallel FPTU to the level of the series SCR system and the series ECM FPTUs outperformed the parallel FPTUs at all weather locations used in the study.
34

Experimental investigation of emissions from a light duty diesel engine utilizing urea spray SCR system

Tamaldin, N. January 2010 (has links)
Stringent pollutant regulations on diesel-powered vehicles have resulted in the development of new technologies to reduce emission of nitrogen oxides (NOx). The urea Selective Catalyst Reduction (SCR) system and Lean NOx Trap (LNT) have become the two promising solutions to this problem. Whilst the LNT results in a fuel penalty due to periodic regeneration, the SCR system with aqueous urea solution or ammonia gas reductants could provide a better solution with higher NOx reduction efficiency. This thesis describes an experimental investigation which has been designed for comparing the effect NOx abatement of a SCR system with AdBlue urea spray and ammonia gas at 5% and 4% concentration. For this study, a SCR exhaust system comprising of a diesel particulate filter (DPF), a diesel oxidation catalyst (DOC) and SCR catalysts was tested on a steady state, direct injection 1998 cc diesel engine. It featured an expansion can, nozzle and diffuser arrangement for a controlled flow profile for CFD model validation. Four different lengths of SCR catalyst were tested for a space velocity study. Chemiluminescence (CLD) based ammonia analysers have been used to provide high resolution NO, NO2 and NH3 measurements across the SCR exhaust system. By measuring at the exit of the SCR bricks, the NO and NO2 profiles within the bricks were found. Comparison of the measurements between spray and gas lead to insights of the behaviour of the droplets upstream and within the SCR bricks. From the analysis, it was deduced that around half to three quarters of the droplets from the urea spray remain unconverted at the entry of the first SCR brick. Approximately 200 ppm of potential ammonia was released from the urea spray in the first SCR brick to react with NOx. The analysis also shows between 10 to 100 ppm of potential ammonia survived through the first brick in droplet form for cases from NOx-matched spray input to excess spray. Measurements show NOx reduction was complete after the second SCR bricks. Experimental and CFD prediction showed breakthrough of all species for the short brick with gas injection due to the high space velocity. The long brick gas cases predictions gave reasonable agreement with experimental results. NO2 conversion efficiency was found higher than NO which contradicts with the fast SCR reaction kinetics. Transient response was observed in both cases during the NOx reduction, ammonia absorption and desorption process. From the transient analysis an estimate of the ammonia storage capacity of the bricks was derived. The amount of ammonia slippage was obtained through numerical integration of the ammonia slippage curve using an excel spreadsheet. Comparing the time constant for the spray and gas cases, showed a slightly faster time response from the gas for both NOx reduction and ammonia slippage.
35

Piezotronic devices and integrated systems

Wu, Wenzhuo 04 January 2012 (has links)
Novel technology which can provide new solutions and enable augmented capabilities to CMOS based technology is highly desired. Piezotronic nanodevices and integrated systems exhibit potential in achieving these application goals. By combining laser interference lithography and low temperature hydrothermal method, an effective approach for ordered growth of vertically aligned ZnO NWs array with high-throughput and low-cost at wafer-scale has been developed, without using catalyst and with a superior control over orientation, location/density and morphology of as-synthesized ZnO NWs. Beyond the materials synthesis, by utilizing the gating effect produced by the piezopotential in a ZnO NW under externally applied deformation, strain-gated transistors (SGTs) and universal logic operations such as NAND, NOR, XOR gates have been demonstrated for performing piezotronic logic operations for the first time. In addition, the first piezoelectrically-modulated resistive switching device based on piezotronic ZnO NWs has also been presented, through which the write/read access of the memory cell is programmed via electromechanical modulation and the logic levels of the strain applied on the memory cell can be recorded and read out for the first time. Furthermore, the first and by far the largest 3D array integration of vertical NW piezotronic transistors circuitry as active pixel-addressable pressure-sensor matrix for tactile imaging has been demonstrated, paving innovative routes towards industrial-scale integration of NW piezotronic devices for sensing, micro/nano-systems and human-electronics interfacing. The presented concepts and results in this thesis exhibit the potential for implementing novel nanoelectromechanical devices and integrating with MEMS/NEMS technology to achieve augmented functionalities to state-of-the-art CMOS technology such as active interfacing between machines and human/ambient as well as micro/nano-systems capable of intelligent and self-sufficient multi-dimensional operations.
36

Triboelectric nanogenerators

Chen, Jun 27 May 2016 (has links)
With the threatening of global warming and energy crises, searching for renewable and green energy resources with reduced carbon emissions is one of the most urgent challenges to the sustainable development of human civilization. In the past decades, increasing research efforts have been committed to seek for clean and renewable energy sources as well as to develop renewable energy technologies. Mechanical motion ubiquitously exists in ambient environment and people’s daily life. In recent years, it becomes an attractive target for energy harvesting as a promising supplement to traditional fuel sources and a potentially alternative power source to battery-operated electronics. Until recently, the mechanisms of mechanical energy harvesting are limited to transductions based on piezoelectric effect, electromagnetic effect, electrostatic effect and magnetostrictive effect. Widespread usage of these techniques is likely to be shadowed by possible limitations, such as structure complexity, low power output, fabrication of high-quality materials, reliance on external power sources and little adaptability on structural design for different applications. In 2012, triboelectric nanogenerator (TENG), a creative invention for harvesting ambient mechanical energy based on the coupling between triboelectric effect and electrostatic effect has been launched as a new and renewable energy technology. The concept and design presented in this thesis research can greatly promote the development of TENG as both sustainable power sources and self-powered active sensors. And it will greatly help to define the TENG as a fundamentally new green energy technology, featured as being simple, reliable, cost-effective as well as high efficiency.
37

Vibration-based Energy Harvesting for Wireless Sensors used in Machine Condition Monitoring

Ou, Qing January 2012 (has links)
In a wide range of industries, machine condition monitoring is one of the most cost effective ways to minimise maintenance efforts and machine downtime. To implement such a system, wireless solutions have increasingly become an attractive proposition due to the ease of installation and minimal infrastructure alternation. However, currently most wireless sensors in the world are powered by a finite battery source. The dependence of batteries not only requires frequent maintenance, but also has adverse environmental consequences associated with battery disposal. These reasons render massive deployment of wireless sensors in the industry problematic. With the advances in semiconductors, power consumption of wireless sensors has been continuously decreasing. It is an inevitable trend for self-powered wireless sensors to emerge and become the norm for machine and environmental monitoring. In this research, vibration is chosen to be the energy source to enable self-powered wireless sensors due to its ubiquitousness in machinery and industrial environments. As a result of relying on resonance, the biggest challenge for vibration-based energy harvesters is their narrow bandwidth. Even a small deviation of the vibration frequency can dramatically reduce the power output. The primary goal of this research is to address this problem. In particular, Piezoelectric generators are identified to be the most suitable technology. In this work, extensive theoretical and experimental studies are conducted in single mass and multi-modal harvesters, and in resonance tuning harvesters by modulus and impedance matching as well as by mechanical actuation. Mathematical modelling plays a significant role in energy harvester designs. A dynamic model that generalises the single degree of freedom models and the continuum models is derived and validated by experiments. The model serves as the building block for the whole research, and it is further refined for the investigation of modulus and impedance matching. In the study of multi-modal harvesters, a continuum model for double-mass piezoelectric cantilever beams is derived and experimentally validated. To study the feasibility of resonance tuning by mechanical means, prototypes were built and performance evaluated. This document details the theoretical basis, concepts and experimental results that extend the current knowledge in the field of energy harvesting. This research work, being highly industrially focused, is believed to be a very significant step forward to a commercial energy harvester that works for a wide range of vibration frequencies.
38

Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion : caractérisation des interfaces électrode/électrolyte / Optimisation of new powered electrodes for Li-ion batterie : interface electrode/electrolyte

Marino, Cyril 25 October 2012 (has links)
Ce mémoire est consacré à l'étude de deux matériaux d'électrodes négatives pour batteries Li-ion : NiSb2 et TiSnSb. Ces matériaux de conversion possèdent des capacités presque deux fois supérieures à celle du graphite, actuellement utilisé, mais ils souffrent i) d'une faible cyclabilité causée par les variations volumiques caractéristiques de ce type d'électrode et ii) d'une grande perte de lithium irréversible lors de la 1ère insertion due à la réactivité de surface avec l'électrolyte. Les mécanismes réactionnels avec le lithium ont été étudiés en profondeur par diffraction des rayons X, spectrométrie Mössbauer (119Sn et 121Sb). Les études in situ et ex situ en spectroscopie d'absorption X ont permis d'identifier la formation de nanoparticules de métal de transition très réactives et dont l'instabilité est probablement à l'origine des phénomènes de relaxation observés dans l'électrode à l'état déchargé. L'amélioration des performances a été réalisée grâce à l'élaboration d'électrodes composites contenant des fibres de carbone et de la CMC. Cette formulation d'électrodes permet d'atteindre une cyclabilité de 250 cycles pour TiSnSb à régimes variables entre 4C et C. L'ajout de FEC dans l'électrolyte apparait également comme une solution pour augmenter la durée de vie des électrodes.L'interface électrode/électrolyte a été analysée par Résonance Magnétique Nucléaire, Spectroscopie Photoéletronique à rayonnement X et spectroscopie infrarouge. Li2CO3 est l'espèce majoritairement formée lors de la réduction de l'électrolyte en 1ère décharge (lié à la création de nouvelles surfaces lors de la réaction et à expansion volumique). Lors de la charge, une restructuration (ou fragmentation) de la SEI (couche de passivation) est probable à cause de la contraction de l'électrode. L'épaisseur de la couche de SEI à l'interface continue de croitre après 15 cycles. / The thesis is devoted to the study of two negative electrode materials for Li-ion batteries: NiSb2 and TiSnSb. These conversion type materials have high capacities greater than graphite electrode used in current devices. However, these compounds suffer from i) a low cyclability caused by volumetric variations which are characteristic of this type of electrode, and ii) a loss of lithium (irreversible process) during the 1st insertion due to the reduction of the liquid electrolyte on the surface of active material.The mechanisms have been studied by X-Ray Diffraction, Mössbauer Spectroscopy (119Sn and 121Sb). The in situ and ex situ X-ray Absorption Spectroscopy analysis have allowed identifying both the formation of highly reactive Ti and Ni nanoparticles and a relaxation effect in the discharged electrode at 0V. The improvement of performances is based on the composite electrodes formulation using carbon fibers as conductive additive and Carboxymethyl cellulose CMC as binder. A cyclability of 250 cycles at C and 4C rate is reached for TiSnSb electrodes. The addition of Fluoro Ethylene Carbonate (FEC) in the electrolyte is another way to increase the life span of electrodes.The electrode/electrolyte interface has been analyzed by Nuclear Magnetic Resonance, X-ray Photoelectron Spectroscopy and Infrared Spectroscopy. During the discharge, among the species produced from the reduction of electrolyte Li2CO3 is in the majority because new surfaces are created (volumetric expansion). On charge, a fragmentation of the Solid Electrolyte Interphase (SEI) deposited on the surface of the active material grains is observed. Moreover, first XPS investigations have shown that the SEI thickness continuously increases on cycling.
39

Evaluation of a solar powered water pumping system in Mutomo, Kenya : Comparison between a submersible induction motor and a PMSM system

Båverman, Gabriel, Tavoosi, Edris January 2019 (has links)
An existing solar-powered water pumping system located in Mutomo, Kenya has beenevaluated in this paper. The requirement for this system is to produce a minimum of25m³ water per day throughout the year.The aim of this thesis is to investigate theperformance of the currently installed system and find a suitable replacement in termsof efficiency and economic viability. In order to acquire the necessary knowledge forthis project, a literature study was carried out to analyse the research within the area.Three simulation models were created which all include an electric motor driven by aphotovoltaic array and are connected to a submersible groundwater pump. Allmodels utilise space vector pulse width modulation. One model of an inductionmotor that represents the currently installed system, one induction motor thatdelivers a minimum of 25 m³ water per day, and one model of a permanent magnetsynchronous motor for comparison. Simulations using weather data, representing anaverage day for each month of the year were carried out. It was shown that thecurrently installed system does not fulfil the requirement of producing 25 m³ waterper day, and in addition produces a significant amount of energy that can not beutilised. It was also shown that the efficiency of the permanent magnet synchronousmotor was superior to the induction motors. In order to compare the systems interms of economic viability, price quotations from world leading manufacturers wereacquired. The results of the economic comparison show that the superior efficiencyof the permanent magnet synchronous motor was not enough to compensate for thehigher investment cost.
40

Design and development of a human-powered hydrofoil

Lindsay, Joshua January 1980 (has links)
Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Joshua Lindsay. / B.S.

Page generated in 0.0618 seconds