• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 5
  • Tagged with
  • 55
  • 55
  • 55
  • 49
  • 26
  • 17
  • 15
  • 13
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

An optical study of the high mass star forming region RCW 34 / Robert Johann Czanik

Czanik, Robert Johann January 2013 (has links)
This study consisted of an optical photometric and spectroscopic analysis on a 7′ 7′ field around the Southern high mass star forming region RCW 34. A previous study on RCW 34 in the NIR discov- ered many deeply embedded young stellar objects which were suspected to be T Tauri stars and which justified further investigation. The data used in this study consisted of three sets, the first two are photometric and spectroscopic data sets which were obtained during the first two weeks of February 2002. A third data set of spectroscopic observations was obtained by the author during the second week of 2011 of selected candidates using results from the NIR study and from the photometric data sets. All of the spectroscopy was conducted with the long slit spectrograph on the 1.9-m telescope and the photometry with DANDICAM on the 1.0-m telescope at the South African Astronomical Observatory (SAAO) in Sutherland. Objectives accomplished in the course of this study were to understand, ob- tain, reduce and interpret photometric and long slit spectroscopic CCD images. From the photometric results 57 stars showed excess blue emission on a colour-colour diagram which could be generated by circumstellar matter. The spectroscopic study showed 5 stars that showed H emission and 2 with strong Li absorption lines which confirm the suspicions of the NIR study about T Tauri stars in the region. All of the stars from the spectroscopic study in 2011 were identified as low-mass K or M type stars. Using colour-magnitude diagrams it was possible to see that the majority of the stars in the cluster are low-mass pre-main sequence stars. The stars matching between the optical and NIR filters were plotted on NIR colour-colour diagrams showing that the 5 stars that had H emission lines also had NIR colours characteristic to T Tauri stars. Out of the 5 stars that showed H emission, 2 were found to be classical T Tauris and three were found to be weak line T Tauris. / Thesis (MSc (Space Physics))--North-West University, Potchefstroom Campus, 2013
32

An optical study of the high mass star forming region RCW 34 / Robert Johann Czanik

Czanik, Robert Johann January 2013 (has links)
This study consisted of an optical photometric and spectroscopic analysis on a 7′ 7′ field around the Southern high mass star forming region RCW 34. A previous study on RCW 34 in the NIR discov- ered many deeply embedded young stellar objects which were suspected to be T Tauri stars and which justified further investigation. The data used in this study consisted of three sets, the first two are photometric and spectroscopic data sets which were obtained during the first two weeks of February 2002. A third data set of spectroscopic observations was obtained by the author during the second week of 2011 of selected candidates using results from the NIR study and from the photometric data sets. All of the spectroscopy was conducted with the long slit spectrograph on the 1.9-m telescope and the photometry with DANDICAM on the 1.0-m telescope at the South African Astronomical Observatory (SAAO) in Sutherland. Objectives accomplished in the course of this study were to understand, ob- tain, reduce and interpret photometric and long slit spectroscopic CCD images. From the photometric results 57 stars showed excess blue emission on a colour-colour diagram which could be generated by circumstellar matter. The spectroscopic study showed 5 stars that showed H emission and 2 with strong Li absorption lines which confirm the suspicions of the NIR study about T Tauri stars in the region. All of the stars from the spectroscopic study in 2011 were identified as low-mass K or M type stars. Using colour-magnitude diagrams it was possible to see that the majority of the stars in the cluster are low-mass pre-main sequence stars. The stars matching between the optical and NIR filters were plotted on NIR colour-colour diagrams showing that the 5 stars that had H emission lines also had NIR colours characteristic to T Tauri stars. Out of the 5 stars that showed H emission, 2 were found to be classical T Tauris and three were found to be weak line T Tauris. / Thesis (MSc (Space Physics))--North-West University, Potchefstroom Campus, 2013
33

A critical assessment of ages derived using pre-main-sequence isochrones in colour-magnitude diagrams

Bell, Cameron Pearce MacDonald January 2012 (has links)
In this thesis a critical assessment of the ages derived using theoretical pre-main-sequence (pre-MS) stellar evolutionary models is presented by comparing the predictions to the low-mass pre-MS population of 14 young star-forming regions (SFRs) in colour-magnitude diagrams (CMDs). Deriving pre-MS ages requires precise distances and estimates of the reddening. Therefore, the main-sequence (MS) members of the SFRs have been used to derive a self-consistent set of statistically robust ages, distances and reddenings with associated uncertainties using a maximum-likelihood fitting statistic and MS evolutionary models. A photometric method (known as the Q-method) for de-reddening individual stars in regions where the extinction is spatially variable has been updated and is presented. The effects of both the model dependency and the SFR composition on these derived parameters are also discussed. The problem of calibrating photometric observations of red pre-MS stars is examined and it is shown that using observations of MS stars to transform the data into a standard photometric system can introduce significant errors in the position of the pre-MS locus in CMD space. Hence, it is crucial that precise photometric studies (especially of pre- MS objects) be carried out in the natural photometric system of the observations. This therefore requires a robust model of the system responses for the instrument used, and thus the calculated responses for the Wide-Field Camera on the Isaac Newton Telescope are presented. These system responses have been tested using standard star observations and have been shown to be a good representation of the photometric system. A benchmark test for the pre-MS evolutionary models is performed by comparing them to a set of well-calibrated CMDs of the Pleiades in the wavelength regime 0.4−2.5 μm. The masses predicted by these models are also tested against dynamical masses using a sample of MS binaries by calculating the system magnitude in a given photometric band- pass. This analysis shows that for Teff ≤ 4000 K the models systematically overestimate the flux by a factor of 2 at 0.5 μm, though this decreases with wavelength, becoming negligible at 2.2 μm. Thus before the pre-MS models are used to derive ages, a recalibration of the models is performed by incorporating an empirical colour-Teff relation and bolometric corrections based on the Ks-band luminosity of Pleiades members, with theoretical corrections for the dependence on the surface gravity (log g). The recalibrated pre-MS model isochrones are used to derive ages from the pre-MS populations of the SFRs. These ages are then compared with the MS derivations, thus providing a powerful diagnostic tool with which to discriminate between the different pre- MS age scales that arise from a much stronger model dependency in the pre-MS regime. The revised ages assigned to each of the 14 SFRs are up to a factor two older than previous derivations, a result with wide-ranging implications, including that circumstellar discs survive longer and that the average Class II lifetime is greater than currently believed.
34

IN-SYNC. V. Stellar Kinematics and Dynamics in the Orion A Molecular Cloud

Da Rio, Nicola, Tan, Jonathan C., Covey, Kevin R., Cottaar, Michiel, Foster, Jonathan B., Cullen, Nicholas C., Tobin, John, Kim, Jinyoung S., Meyer, Michael R., Nidever, David L., Stassun, Keivan G., Chojnowski, S. Drew, Flaherty, Kevin M., Majewski, Steven R., Skrutskie, Michael F., Zasowski, Gail, Pan, Kaike 16 August 2017 (has links)
The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high-resolution near-infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of similar to 2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (vr). The young stellar population remains kinematically associated with the molecular gas, following a similar to 10 km s(-1) gradient along the filament. However, near the center of the region, the vr distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in the foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of colocated stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion sigma(v) varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for ongoing expansion, from a v(r)-extinction correlation. In the southern filament, sigma(v) is similar to 2-3 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar subpopulations, detached from the gas. In contrast, sv decreases toward L1641S, where the population is again in agreement with a virial state.
35

Shock Excited 1720 MHz Masers

De Witt, Aletha 31 December 2005 (has links)
1720 MHz OH masers have been detected towards a number of supernova remnants (SNRs) at the shock interface where the SNR slams into the interstellar medium. Models indicate that these masers are shock excited and can only be produced under tight constraints of the physical conditions. In particular, the masers can only form behind a C-type shock. Jets from newlyformed stars plow into the surrounding gas, creating nebulous regions known as Herbig Haro (HH) objects. Signatures of C-type shocks have been found in many HH objects. If conditions behind the shock fronts of HH objects are able to support 1720 MHz OH masers they would be a usefull diagnostic tool for star formation. A survey toward HH objects detected a number of 1720 MHz OH lines in emission, but future observations with arrays are required to confirm the presence of masers. / Physics / M.Sc. (Astronomy)
36

Exteme variables in star forming regions

Contreras Peña, Carlos Eduardo January 2015 (has links)
The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability in two multi-epoch infrared surveys: the UKIDSS Galactic Plane Survey (GPS) and the Vista Variables in the Via Lactea (VVV). In order to further investigate the nature of the selected variable stars, we use photometric information arising from public surveys at near- to farinfrared wavelengths. In addition we have performed spectroscopic and photometric follow-up for a large subset of the samples arising from GPS and VVV. We analyse the widely separated two-epoch K-band photometry in the 5th, 7th and 8th data releases of the UKIDSS Galactic Plane Survey. We find 71 stars with _K > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is mostly excluded from the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (27 stars). The analysis of the multi-epoch K-band photometry of 2010-2012 data from VVV covering the Galactic disc at |b| < 1◦ yields 816 high amplitude variables, which include known variables of different classes such as high mass X-ray binaries, Novae and eclipsing binaries among others. Remarkably, 65% of the sample are found concentrated towards areas of star formation, similar to the results from GPS. In both surveys, sources in SFRs show spectral energy distributions (SEDs) that support classification as YSOs. This indicates that YSOs dominate the Galactic population of high amplitude infrared variable stars at low luminosities and therefore likely dominate the total high amplitude population. Spectroscopic follow-up allows us to confirm the pre-main sequence nature of several GPS and VVV Objects. Most objects in both samples show spectroscopic signatures that can be attributed to YSOs undergoing high states of accretion, such as veiling of photospheric features and CO emission, or show FUor-like spectra. We also find a large fraction of objects with 2.12 μm H2 emission that can be explained as arising from shock-excited emission caused by molecular outflows. Whether these molecular outflows are related to outbursts events cannot be confirmed from our data. Adding the GPS and VVV spectroscopic results, we find that between 6 and 14 objects are new additions to the FUor class from their close resemblance to the near-infrared spectra of FUors, and at least 23 more objects are new additions to the eruptive variable class. For most of these we are unable to classify them into any of the original definitions for this variable class. In any case, we are adding up to 37 new stars to the eruptive variable class which would double the current number of known objects. We note that most objects are found to be deeply embedded optically invisible stars, thus increasing the number of objects belonging to this subclass by a much larger factor. In general, objects in our samples which are found to be likely eruptive variable stars show a mixture of characteristics that can be attributed to both of the optically-defined classes. This agrees well with the recent discoveries in the literature. Finally, we are able to derive a first rough estimate on the incidence of episodic accretion among class I YSOs in the star-forming complex G305. We find that _ 9% of such objects are in a state of high accretion. This number is in agreement with previous theoretical and observational estimates among class I YSOs.
37

Monte Carlo radiation transfer studies of protoplanetary environments

Walker, Christina H. January 2007 (has links)
Monte Carlo radiation transfer provides an efficient modelling tool for probing the dusty local environment of young stars. Within this thesis, such theoretical models are used to study the disk structure of objects across the mass spectrum - young low mass Brown Dwarfs, solar mass T-Tauri stars, intermediate mass Herbig Ae stars, and candidate B-stars with massive disks. A Monte Carlo radiation transfer code is used to model images and photometric data in the UV - mm wavelength range. These models demonstrate how modelling techniques have been updated in an attempt to reduce the number of unknown parameters and extend the diversity of objects that can be studied.
38

The Sizes and Depletions of the Dust and Gas Cavities in the Transitional Disk J160421.7-213028

Dong, Ruobing, Marel, Nienke van der, Hashimoto, Jun, Chiang, Eugene, Akiyama, Eiji, Liu, Hauyu Baobab, Muto, Takayuki, Knapp, Gillian R., Tsukagoshi, Takashi, Brown, Joanna, Bruderer, Simon, Koyamatsu, Shin, Kudo, Tomoyuki, Ohashi, Nagayoshi, Rich, Evan, Satoshi, Mayama, Takami, Michihiro, Wisniewski, John, Yang, Yi, Zhu, Zhaohuan, Tamura, Motohide 21 February 2017 (has links)
We report ALMA Cycle 2 observations of 230 GHz (1.3 mm) dust continuum emission, and (CO)-C-12, (CO)-C-13, and (CO)-O-18 J = 2-1 line emission, from the Upper Scorpius transitional disk [PZ99] J160421.7-213028, with an angular resolution of similar to 0''.25 (35 au). Armed with these data and existing H-band scattered light observations, we measure the size and depth of the disk's central cavity, and the sharpness of its outer edge, in three components: sub-mu m-sized "small" dust traced by scattered light, millimeter-sized "big" dust traced by the millimeter continuum, and gas traced by line emission. Both dust populations feature a cavity of radius similar to 70 au that is depleted by factors of at least 1000 relative to the dust density just outside. The millimeter continuum data are well explained by a cavity with a sharp edge. Scattered light observations can be fitted with a cavity in small dust that has either a sharp edge at 60 au, or an edge that transitions smoothly over an annular width of 10 au near 60 au. In gas, the data are consistent with a cavity that is smaller, about 15 au in radius, and whose surface density at 15 au is 10(3 +/- 1) times smaller than the surface density at 70 au; the gas density grades smoothly between these two radii. The CO isotopologue observations rule out a sharp drop in gas surface density at 30 au or a double-drop model, as found by previous modeling. Future observations are needed to assess the nature of these gas and dust cavities (e.g., whether they are opened by multiple as-yet-unseen planets or photoevaporation).
39

What is the Mass of a Gap-opening Planet?

Dong, Ruobing, Fung, Jeffrey 24 January 2017 (has links)
High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity M-p(2)/alpha, where Mp is the mass of the gap-opening planet and a characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa. 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming a = 10(-3), the derived planet masses in all cases are roughly between 0.1 and 1M(J).
40

Determinação de distâncias cinemáticas de estrelas pré-sequência principal em regiões de formação estelar / Determination of Kinematic Distances of Pre-Main Sequence Stars in Star-Forming Regions

Galli, Phillip Andreas Brenner 18 December 2012 (has links)
Este trabalho tem como objetivo principal a determinação da distância de estrelas pré-sequência principal em regiões de formação estelar próximas. A determinação precisa da distância individual das estrelas é necessária para obter os principais parâmetros físicos de cada estrela e para investigar a estrutura da Galáxia. Em particular, investigamos as regiões de formação estelar de Lupus e Ophiuchus que contém uma das associações mais ricas em estrelas T Tauri. A grande maioria das estrelas pré-sequência principal nessas regiões não foi observada pelo satélite Hipparcos devido à sua magnitude e também não têm paralaxe trigonométrica medida a partir do solo devido à distância em que se encontram. O procedimento aqui empregado para a obter a distância individual das estrelas baseia-se na estratégia de ponto de convergência e utiliza dados de movimento próprio e velocidade radial. Desenvolvemos uma nova versão do método de ponto de convergência que permite simultaneamente determinar a posição do ponto de convergência e selecionar os membros de um moving group. Partindo dos dados de movimento próprio e o novo método aqui desenvolvido investigamos as propriedades cinemáticas e realizamos uma análise de pertinência das estrelas em cada região estudada o que nos permitiu identificar um moving group com 114 estrelas em Lupus e 55 estrelas em Ophiuchus. Calculamos a distância para cada membro do grupo usando velocidades radiais publicadas, que foram complementadas com novas observações, e a velocidade espacial do moving grup para as estrelas com velocidade radial não conhecida. Calculamos as paralaxes com precisão de 1-2~mas o que implica em um erro relativo médio de 25% nas distâncias obtidas. Finalmente, investigamos as propriedades dos diversos subgrupos e a estrutura tridimensional dos complexos de nuvens em Lupus e Ophiuchus, concluindo que existem efeitos de profundidade importantes. Utilizamos os novos resultados de distância para obter os parâmetros físicos (luminosidade, massa e idade) das estrelas e o diagrama-HR de cada região de formação estelar considerada, confirmando a distribuição de idade diferente das duas subclasses de estrelas T Tauri. Os resultados aqui obtidos representam um primeiro passo no sentido de melhor entender a estrutura das regiões de formação estelar e os estágios iniciais da formação de estrelas e planetas. / The main objective of this work is to determine the distance of pre-main sequence stars in nearby star-forming regions. A precise determination of the distance to individual stars is required to accurately determine the main physical parameters of each star and the structure of the Galaxy. Here we investigate the Lupus and Ophiuchus star-forming regions that contain one of the richest associations of T Tauri stars. Most pre-main sequence stars in these regions were neither observed by the Hipparcos satellite due to their magnitude nor have any trigonometric parallax measured from the ground due to their distance. The procedure that we use here to derive the distance to individual stars is based on the convergent point strategy and makes full use of proper motion and radial velocity data. We developed a new version of the convergent point search method that simultaneously determines the convergent point position and selects the most likely members of a moving group. Based on proper motion data and our new method we investigate the kinematic properties and perform a membership analysis of the stars in each star-forming region considered that allows us to identify a moving group with 114 stars in Lupus and 55 stars in Ophiuchus. We calculate the distance of each group member using published radial velocities, which we supplemented with new measurements, and the spatial velocity of the moving group for the remaining stars with unknown radial velocity. We derived parallaxes with accuracies of 1-2 mas yielding the average relative error of 25% on the distances. Finally, we investigate the properties of the various subgroups and the three dimensional structure of the Lupus and Ophiuchus cloud complex and conclude that significant depth effects exist. We use the new distances to refine the physical parameters (luminosity, mass and age) of stars and the HR-diagram for each star-forming region considered confirming the different age distribution of the two T Tauri subclasses. These results represent a first step towards better understanding the structure of star-forming regions and the early stages of star and planet formation.

Page generated in 0.0791 seconds