Spelling suggestions: "subject:"préconditionnement."" "subject:"reconditionnement.""
1 |
On numerical resilience in linear algebra / Conception d'algorithmes numériques pour la résilience en algèbre linéaireZounon, Mawussi 01 April 2015 (has links)
Comme la puissance de calcul des systèmes de calcul haute performance continue de croître, en utilisant un grand nombre de cœurs CPU ou d’unités de calcul spécialisées, les applications hautes performances destinées à la résolution des problèmes de très grande échelle sont de plus en plus sujettes à des pannes. En conséquence, la communauté de calcul haute performance a proposé de nombreuses contributions pour concevoir des applications tolérantes aux pannes. Cette étude porte sur une nouvelle classe d’algorithmes numériques de tolérance aux pannes au niveau de l’application qui ne nécessite pas de ressources supplémentaires, à savoir, des unités de calcul ou du temps de calcul additionnel, en l’absence de pannes. En supposant qu’un mécanisme distinct assure la détection des pannes, nous proposons des algorithmes numériques pour extraire des informations pertinentes à partir des données disponibles après une pannes. Après l’extraction de données, les données critiques manquantes sont régénérées grâce à des stratégies d’interpolation pour constituer des informations pertinentes pour redémarrer numériquement l’algorithme. Nous avons conçu ces méthodes appelées techniques d’Interpolation-restart pour des problèmes d’algèbre linéaire numérique tels que la résolution de systèmes linéaires ou des problèmes aux valeurs propres qui sont indispensables dans de nombreux noyaux scientifiques et applications d’ingénierie. La résolution de ces problèmes est souvent la partie dominante; en termes de temps de calcul, des applications scientifiques. Dans le cadre solveurs linéaires du sous-espace de Krylov, les entrées perdues de l’itération sont interpolées en utilisant les entrées disponibles sur les nœuds encore disponibles pour définir une nouvelle estimation de la solution initiale avant de redémarrer la méthode de Krylov. En particulier, nous considérons deux politiques d’interpolation qui préservent les propriétés numériques clés de solveurs linéaires bien connus, à savoir la décroissance monotone de la norme-A de l’erreur du gradient conjugué ou la décroissance monotone de la norme résiduelle de GMRES. Nous avons évalué l’impact du taux de pannes et l’impact de la quantité de données perdues sur la robustesse des stratégies de résilience conçues. Les expériences ont montré que nos stratégies numériques sont robustes même en présence de grandes fréquences de pannes, et de perte de grand volume de données. Dans le but de concevoir des solveurs résilients de résolution de problèmes aux valeurs propres, nous avons modifié les stratégies d’interpolation conçues pour les systèmes linéaires. Nous avons revisité les méthodes itératives de l’état de l’art pour la résolution des problèmes de valeurs propres creux à la lumière des stratégies d’Interpolation-restart. Pour chaque méthode considérée, nous avons adapté les stratégies d’Interpolation-restart pour régénérer autant d’informations spectrale que possible. Afin d’évaluer la performance de nos stratégies numériques, nous avons considéré un solveur parallèle hybride (direct/itérative) pleinement fonctionnel nommé MaPHyS pour la résolution des systèmes linéaires creux, et nous proposons des solutions numériques pour concevoir une version tolérante aux pannes du solveur. Le solveur étant hybride, nous nous concentrons dans cette étude sur l’étape de résolution itérative, qui est souvent l’étape dominante dans la pratique. Les solutions numériques proposées comportent deux volets. A chaque fois que cela est possible, nous exploitons la redondance de données entre les processus du solveur pour effectuer une régénération exacte des données en faisant des copies astucieuses dans les processus. D’autre part, les données perdues qui ne sont plus disponibles sur aucun processus sont régénérées grâce à un mécanisme d’interpolation. / As the computational power of high performance computing (HPC) systems continues to increase by using huge number of cores or specialized processing units, HPC applications are increasingly prone to faults. This study covers a new class of numerical fault tolerance algorithms at application level that does not require extra resources, i.e., computational unit or computing time, when no fault occurs. Assuming that a separate mechanism ensures fault detection, we propose numerical algorithms to extract relevant information from available data after a fault. After data extraction, well chosen part of missing data is regenerated through interpolation strategies to constitute meaningful inputs to numerically restart the algorithm. We have designed these methods called Interpolation-restart techniques for numerical linear algebra problems such as the solution of linear systems or eigen-problems that are the inner most numerical kernels in many scientific and engineering applications and also often ones of the most time consuming parts. In the framework of Krylov subspace linear solvers the lost entries of the iterate are interpolated using the available entries on the still alive nodes to define a new initial guess before restarting the Krylov method. In particular, we consider two interpolation policies that preserve key numerical properties of well-known linear solvers, namely the monotony decrease of the A-norm of the error of the conjugate gradient or the residual norm decrease of GMRES. We assess the impact of the fault rate and the amount of lost data on the robustness of the resulting linear solvers.For eigensolvers, we revisited state-of-the-art methods for solving large sparse eigenvalue problems namely the Arnoldi methods, subspace iteration methods and the Jacobi-Davidson method, in the light of Interpolation-restart strategies. For each considered eigensolver, we adapted the Interpolation-restart strategies to regenerate as much spectral information as possible. Through intensive experiments, we illustrate the qualitative numerical behavior of the resulting schemes when the number of faults and the amount of lost data are varied; and we demonstrate that they exhibit a numerical robustness close to that of fault-free calculations. In order to assess the efficiency of our numerical strategies, we have consideredan actual fully-featured parallel sparse hybrid (direct/iterative) linear solver, MaPHyS, and we proposed numerical remedies to design a resilient version of the solver. The solver being hybrid, we focus in this study on the iterative solution step, which is often the dominant step in practice. The numerical remedies we propose are twofold. Whenever possible, we exploit the natural data redundancy between processes from the solver toperform an exact recovery through clever copies over processes. Otherwise, data that has been lost and is not available anymore on any process is recovered through Interpolationrestart strategies. These numerical remedies have been implemented in the MaPHyS parallel solver so that we can assess their efficiency on a large number of processing units (up to 12; 288 CPU cores) for solving large-scale real-life problems.
|
2 |
A parallel iterative solver for large sparse linear systems enhanced with randomization and GPU accelerator, and its resilience to soft errors / Un solveur parallèle itératif pour les grands systèmes linéaires creux, amélioré par la randomisation et l'utilisation des accélérateurs GPU, et sa résilience aux fautes logiciellesJamal, Aygul 28 September 2017 (has links)
Dans cette thèse de doctorat, nous abordons trois défis auxquels sont confrontés les solveurs d'algèbres linéaires dans la perspective des futurs systèmes exascale: accélérer la convergence en utilisant des techniques innovantes au niveau algorithmique, en profitant des accélérateurs GPU (Graphics Processing Units) pour améliorer le calcul sur plusieurs systèmes, en évaluant l'impact des erreurs due à l'augmentation du parallélisme dans les superordinateurs. Nous nous intéressons à l'étude des méthodes permettant d'accélérer la convergence et le temps d'exécution des solveurs itératifs pour les grands systèmes linéaires creux. Le solveur plus spécifiquement considéré dans ce travail est le “parallel Algebraic Recursive Multilevel Solver (pARMS)” qui est un soldeur parallèle sur mémoire distribuée basé sur les méthodes de sous-espace de Krylov.Tout d'abord, nous proposons d'intégrer une technique de randomisation appelée “Random Butterfly Transformations (RBT)” qui a été proposée avec succès pour éliminer le coût du pivotage dans la résolution des systèmes linéaires denses. Notre objectif est d'appliquer cette technique dans le préconditionneur ARMS de pARMS pour résoudre plus efficacement le dernier système Complément de Schur dans l'application du processus à multi-niveaux récursif. En raison de l'importance considérable du dernier Complément de Schur pour certains problèmes de test, nous proposons également d'utiliser une variante creux de RBT suivie d'un solveur direct creux (SuperLU). Les résultats expérimentaux sur certaines matrices de la collection de Davis montrent une amélioration de la convergence et de la précision par rapport aux implémentations existantes.Ensuite, nous illustrons comment une approche non intrusive peut être appliquée pour implémenter des calculs GPU dans le solveur pARMS, plus particulièrement pour la phase de préconditionnement locale qui représente une partie importante du temps pour la résolution. Nous comparons les solveurs purement CPU avec les solveurs hybrides CPU / GPU sur plusieurs problèmes de test issus d'applications physiques. Les résultats de performance du solveur hybride CPU / GPU utilisant le préconditionnement ARMS combiné avec RBT, ou le préconditionnement ILU(0), montrent un gain de performance jusqu'à 30% sur les problèmes de test considérés dans nos expériences.Enfin, nous étudions l'effet des défaillances logicielles variable sur la convergence de la méthode itérative flexible GMRES (FGMRES) qui est couramment utilisée pour résoudre le système préconditionné dans pARMS. Le problème ciblé dans nos expériences est un problème elliptique PDE sur une grille régulière. Nous considérons deux types de préconditionneurs: une factorisation LU incomplète à double seuil (ILUT) et le préconditionneur ARMS combiné avec randomisation RBT. Nous considérons deux modèle de fautes logicielles différentes où nous perturbons la multiplication du vecteur matriciel et la phase de préconditionnement, et nous comparons leur impact potentiel sur la convergence. / In this PhD thesis, we address three challenges faced by linear algebra solvers in the perspective of future exascale systems: accelerating convergence using innovative techniques at the algorithm level, taking advantage of GPU (Graphics Processing Units) accelerators to enhance the performance of computations on hybrid CPU/GPU systems, evaluating the impact of errors in the context of an increasing level of parallelism in supercomputers. We are interested in studying methods that enable us to accelerate convergence and execution time of iterative solvers for large sparse linear systems. The solver specifically considered in this work is the parallel Algebraic Recursive Multilevel Solver (pARMS), which is a distributed-memory parallel solver based on Krylov subspace methods.First we integrate a randomization technique referred to as Random Butterfly Transformations (RBT) that has been successfully applied to remove the cost of pivoting in the solution of dense linear systems. Our objective is to apply this method in the ARMS preconditioner to solve more efficiently the last Schur complement system in the application of the recursive multilevel process in pARMS. The experimental results show an improvement of the convergence and the accuracy. Due to memory concerns for some test problems, we also propose to use a sparse variant of RBT followed by a sparse direct solver (SuperLU), resulting in an improvement of the execution time.Then we explain how a non intrusive approach can be applied to implement GPU computing into the pARMS solver, more especially for the local preconditioning phase that represents a significant part of the time to compute the solution. We compare the CPU-only and hybrid CPU/GPU variant of the solver on several test problems coming from physical applications. The performance results of the hybrid CPU/GPU solver using the ARMS preconditioning combined with RBT, or the ILU(0) preconditioning, show a performance gain of up to 30% on the test problems considered in our experiments.Finally we study the effect of soft fault errors on the convergence of the commonly used flexible GMRES (FGMRES) algorithm which is also used to solve the preconditioned system in pARMS. The test problem in our experiments is an elliptical PDE problem on a regular grid. We consider two types of preconditioners: an incomplete LU factorization with dual threshold (ILUT), and the ARMS preconditioner combined with RBT randomization. We consider two soft fault error modeling approaches where we perturb the matrix-vector multiplication and the application of the preconditioner, and we compare their potential impact on the convergence of the solver.
|
Page generated in 0.1097 seconds