• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Do the U.S. Stock Returns Affect Asian Stock Returns? Evidence of the Asian Four Litter Dragons

Lin, Jihn-yih 01 May 2008 (has links)
In the literature, it is a common belief that the U.S. stock market is the single most influential market in the world. The U.S. stock market is a global factor, affecting both developed and emerging markets. This dissertation empirically investigates the interactions between equity markets of the Asian four little dragons (Hong Kong, Korea, Singapore, and Taiwan) and the U.S. equity market. In order to assess correctly the effect of the U.S. stock return rates on emerging equity markets, we incorporate the assumption that returns on the U.S. stock market affect the stock returns on emerging markets but not vice versa. In other words, it is assumed that the U.S. stock exchange performance is not affected by one of the four Asian equity market; however, the latter is affected by both its own dynamics and the U.S. stock exchange. This dissertation consists of three essays. In order to estimate the dynamic impulse responses of the emerging markets¡¦ return rates to random shocks in the U.S. return rates, the first essay uses block exogenous VAR models which suggested in the papers of Zha (1996), Cushman and Zha (1997), and Zha (1999), and it finds that return rates on the U.S. positively affect stock return rates of the four Asian markets. By using the method of Rapach and Wohar (2005a, 2006a), and the second essay also finds that return rates on the U.S. have in-sample and out-of-sample predictive ability for return rates of the respective emerging market. The last essay follows the econometric methodology of Bai and Perron (1998, 2003a, 2003b, and 2004) and it points out that there exists at least one structural change in the predictive regression model of the respective empirical equity market. The results suggest that an emerging equity market¡¦s sensitivity to shocks from the U.S. return rates is related to its degree of openness.
2

Aggregate insider trading activity in the UK stock and option markets

Wuttidma, Clarisse Pangyat January 2015 (has links)
This thesis presents three empirical chapters investigating the informativeness of aggregate insider trading activities in the UK’s stock and option markets. Chapter one examines the relationship between aggregate insider trading and stock market volatility. The results suggest a positive relationship between aggregate insider trading and stock market volatility, confirming the hypothesis that aggregate insider trading increases the rate of flow of information into the stock market which in turn increases stock market volatility. Given that insiders also trade for non-informational reasons, we distinguish between informative and noisy insider trades and examine whether they affect stock market volatility differently. We find that only aggregate insider buy trades and medium sized insider trades affect stock market volatility positively. Chapter two re-examines whether aggregate insider trading can help predict future UK stock market returns. The results suggest that there is information in aggregate insider trading that can help predict future stock market returns. This is due to aggregate insiders’ ability to time the market based on their possession of superior information about unexpected economy-wide changes. We also find that a positive shock in aggregate insider trading causes an increase in future stock market returns two months after the shock. We test whether there is information in medium insider trades that can help predict future stock market returns. The results suggest that medium insider trades, specifically medium insider buy trades can help predict future stock market returns. Lastly, chapter three explores the relationship between aggregate exercise of executive stock options (ESO) and stock market volatility. Insiders in possession of private information may use their informational advantage to trade in the option markets via their exercise of ESOs which may affect stock market volatility. We find that aggregate exercise of ESOs affect stock market volatility positively. This is due to an increase in the rate of flow of information released via private information motivated exercises which cause prices to move as they adjust to the new information thereby increasing volatility. When executives have private information about future stock performance, they are motivated to exercise and sell stocks post exercise to avoid losses. They are also motivated to exercise and sell only a proportion of their stocks, specifically more than 50% of the acquired stocks and they exercise near the money ESOs. We find that for all these private information motivated reasons to exercise ESOs, stock market volatility is positively affected.
3

Selección genómica en poblaciones reducidas de vacuno de leche

Jiménez Montero, José Antonio 21 March 2013 (has links)
La selección genómica está cambiando profundamente el mercado del vacuno de leche. En la actualidad, es posible obtener una alta precisión en las valoraciones genéticas de animales muy jóvenes sin la necesidad del fenotipo propio o el de sus hijas. Por tanto, la respuesta genética de un programa genómico bien diseñado supera netamente a la selección tradicional. Esta mejora está modificando uno de los principios tradicionales del mercado de vacuno de leche como era la preferencia de uso de toros con altas fiabilidades frente a otros animales con valores genéticos a priori superiores. Esta tesis contiene seis capítulos en los cuales se estudian de las bases para la implementación del programa de selección genómica en el vacuno de leche español. Para ello se realizaron estudios de simulación y valoraciones genómicas con datos reales de la primera población nacional de referencia. El objetivo principal de esta tesis es contribuir a la implementación de la selección genómica en el vacuno de leche español. Los objetivos específicos son: (1) Estudiar alternativas de genotipado en poblaciones reducidas de vacuno lechero. (2) Desarrollar y validar metodología para la evaluación de grandes cantidades de genotipos. (3) Estudiar el efecto de los procesos de imputación de genotipos en la capacidad predictiva de los genotipos resultantes. Las principales cuestiones relacionadas con la selección genómica en vacuno lechero fueron discutidas en el capítulo 1 incluyendo: aspectos estadísticos y genéticos en los que se basa la selección genómica, diseño de poblaciones de referencia, revisión del estado del arte en cuanto a la metodología desarrollada para evaluación genómica, diseño y métodos de los algoritmos de imputación, e implementación de la selección genómica en vacuno de leche a nivel de programa de selección, centro de inseminación y de granja comercial. En el capítulo 2 se realizó un estudio de simulación comparando estrategias de genotipado selectivo en poblaciones de hembras frente al uso de selección tradicional o selección genómica con una población de referencia de machos. La población de referencia española estaba formada en principio por algo más de 1,600 toros con prueba de progenie. Este tamaño no es, en principio, suficiente para obtener predicciones genómicas de alta fiabilidad. Por tanto, debían evaluarse diferentes alternativas para incrementar la habilidad predictiva de las evaluaciones. Las estrategias que consisten en usar como población de referencia los animales en los extremos de la distribución fenotípica permitían mejorar la precisión de la evaluación. Los resultados usando 1,000 genotipos fueron 0.50 para el carácter de baja heredabilidad y 0.63 para el de heredabilidad media cuando la variable dependiente fue el fenotipo ajustado. Cuando se usaron valores genéticos como variable dependiente las correlaciones fueron 0.48 y 0.63 respectivamente. Para los mismos caracteres, una población de 996 machos obtuvo correlaciones de 0.48 y 0.55 en las predicciones posteriores. El estudio concluye que la estrategia de genotipado que proporciona la mayor correlación es la que incluye las hembras de ambas colas de la distribución de fenotipos. Por otro lado se pone de manifiesto que la mera inclusión de las hembras élite que son las habitualmente genotipadas en las poblaciones reales produce resultados no satisfactorios en la predicción de valores genómicos. En el capítulo 3, el Random Boosting (R-Boost) es comparado con otros métodos de evaluación genómica como Bayes-A, LASSO Bayesiano y G-BLUP. La población de referencia española y caracteres incluidos en las evaluaciones genéticas tradicionales de vacuno lechero fueron usados para comparar estos métodos en términos de precisión y sesgo. Las predicciones genómicas fueron más precisas que el índice de pedigrí tradicional a la hora de predecir los resultados de futuros test de progenie como era de esperar. Las ganancias en precisión debidas al empleo de la selección genómica dependen del carácter evaluado y variaron entre 0.04 (Profundidad de ubre) y 0.42 (Porcentaje de grasa) unidades de correlación de Pearson. Los resultados promediados entre caracteres mostraron que el LASSO Bayesiano obtuvo mayores correlaciones superando al R-Boost, Bayes-A y G-BLUP en 0.01, 0.03 y 0.03 unidades respectivamente. Las predicciones obtenidas con el LASSO Bayesiano también mostraron menos desviaciones en la media, 0.02, 0.03 y 0.10 menos que Bayes-A, R-Boost y G-BLUP, respectivamente. Las predicciones usando R-Boost obtuvieron coeficientes de regresión más próximos a la unidad que el resto de métodos y los errores medios cuadráticos fueron un 2%, 10% y 12% inferiores a los obtenidos a partir del B-LASSO, Bayes-A y G-BLUP, respectivamente. El estudio concluye que R- Boost es una metodología aplicable a selección genómica y competitiva en términos de capacidad predictiva. En el capítulo 4, el algoritmo de machine learning R-Boost evaluado en el capítulo 3 es descrito e implementado para selección genómica adaptado a la evaluación de grandes bases de datos de una forma eficiente. Tras la incorporación en el consorcio Eurogenomics, el programa genómico español pasó a disponer de más de 22,000 toros probados como población de referencia, por tanto era necesario implementar un método capaz de evaluar éste gran conjunto de datos en un tiempo razonable. El nuevo algoritmo denominado R-Boost realiza de forma secuencial un muestreo aleatorio de SNPs en cada iteración sobre los cuales se aplica un predictor débil. El algoritmo fue evaluado sobre datos reales de vacuno de leche empleados en el capítulo 3 estudiando más en profundidad el comportamiento de los parámetros de sintonización. Esta propuesta de modificación del Boosting puede obtener predicciones sin perdida de precisión o incrementos de sesgo empleando tan solo un 1% del tiempo de computación original. En el capítulo 5 se evalúa el efecto de usar genotipos de baja densidad imputados con el software Beagle en cuanto a su posterior habilidad predictiva cuando son incorporados a la población de referencia. Para ello se emplearon dos métodos de evaluación R-Boost y un BLUP con matriz genómica. Animales de los que se conocían los SNPs incluidos en los chips GoldenGate Bovine 3K y BovineLD BeadChip, fueron imputados hasta conocer los SNPs incluidos en el BovineSNP50v2 BeadChip. Posteriormente, un segundo proceso de imputación obtuvo los SNPs incluidos en el BovineHD BeadChip. Tras imputatar desde dos genotipados a baja densidad, se obtuvo similar capacidad predictiva a la obtenida empleando los originales en densidad 50K. Sin embargo, sólo se obtuvo una pequeña mejora (0.002 unidades de Pearson) al imputar a HD. El mayor incremento se obtuvo para el carácter días abiertos donde las correlaciones en el grupo de validación aumentaron en 0.06 unidades de Pearson las correlaciones en el grupo de validación cuando se emplearon los genotipos imputados a HD. En función de la densidad de genotipado, el algoritmo R-Boost mostró mayores diferencias que el G-BLUP. Ambos métodos obtuvieron resultados similares salvo en el caso de porcentaje de grasa, donde las predicciones obtenidas con el R-Boost fueron superiores a las del G-BLUP en 0.20 unidades de correlación de Pearson. El estudio concluye que la capacidad predictiva para algunos caracteres puede mejorar imputando la población de referencia a HD así como empleando métodos de evaluación capaces de adaptarse a las distintas arquitecturas genéticas posibles. Finalmente en el capitulo 6 se desarrolla una discusión general de los estudios presentados en los capítulos anteriores y se enlazan con la implementación de la selección genómica en el vacuno lechero español, que se ha desarrollado en paralelo a esta tesis doctoral. La primera población de referencia con unos 1.600 toros fue evaluada en el capítulo 4 y fue usada para comparar los distintos métodos y escenarios propuestos en los capítulos 3, 4 y 5. La primera evaluación genómica obtenida para los caracteres incluidos en el capítulo 4 de esta tesis estuvo disponible para los centros de inseminación incluidos en el programa en septiembre de 2011. La población de Eurogenomics se incorporó en Noviembre de dicho año, completándose la primera evaluación para los caracteres incluidos en el índice de selección ICO en Febrero de 2012 empleando el R-Boost descrito en el capítulo 3. En mayo de 2012 las evaluaciones del carácter proteína fueron validadas por Interbull y finalmente el 30 de Noviembre del 2012 las primeras evaluaciones genómicas oficiales fueron publicadas on-line por la federación de ganaderos CONAFE (http://www.conafe.com/noticias/20121130a.htm). / Jiménez Montero, JA. (2013). Selección genómica en poblaciones reducidas de vacuno de leche [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/27649
4

Avaliação de modelos preditivos de seleção genômica ampla em testes de progênies e testes clonais de Eucalyptus / Assessment of predictive genome-wide selection models in clonal and progeny trials of Eucalyptus

Garcia, Carla da Costa 25 February 2016 (has links)
O grande potencial da genômica em benefício do melhoramento genético aplicado é a utilização direta das informações de marcadores de DNA na seleção, de forma a permitir igual ou maior eficiência seletiva, maior rapidez na obtenção de ganhos genéticos e redução de custos de fenotipagem, em comparação com a seleção tradicional. Esta era genômica está trazendo novas oportunidades para os melhoristas florestais, porém desafios ainda existem para o uso operacional da Seleção Genômica Ampla. Sendo assim, este trabalho teve por objetivo avaliar a capacidade preditiva de características de crescimento volumétrico de modelos de SGA previamente construídos para características de crescimento volumétrico e qualidade da madeira com uma população elite de melhoramento genético da International Paper do Brasil que atuou como população de treinamento. Os modelos preditivos foram aplicados em quatro populações de candidatos à seleção constituídos por testes de progênies e teste clonal de Eucalyptus com características contrastantes do ponto de vista de relacionamento genético com a população na qual os modelos foram desenvolvidos: (1) três populações compostas por indivíduos geneticamente relacionados com a população de descoberta e (2) uma população composta por indivíduos geneticamente não relacionados com a população de descoberta. Posteriormente, as quatro populações de avaliação, compostas por 100 indivíduos genotipados em cada uma, foram utilizadas para construir novos modelos preditivos e validações cruzadas realizadas entre estas populações. Foram utilizados para as análises SNPs com frequência de declaração de genótipo (call rate) ≥ 0.90 e MAF (menor frequência alélica) ≥ 0.01, totalizando 29.090 marcadores. O modelo preditivo previamente elaborado para população elite da International Paper apresentou capacidades preditivas que variaram de -0,296 para o caráter Altura em população geneticamente não relacionada até 0,440 para o caráter DAP em uma população geneticamente relacionada. Com os modelos desenvolvidos com as quatro populações genotipadas, e realizando seleção de marcas com base nos seus efeitos, as maiores capacidades preditivas foram obtidas por um número de SNPs médio que variou de 1371 para volume e IMA a 1467 para DAP. Usando esta abordagem, a capacidade preditiva maximizada para DAP foi de 0,744, 0,727 para altura, 0,751 para volume e 0,752 para IMA. Acurácias preditivas maximizadas, foram em seguida estimadas ao utilizar o menor número de SNPs selecionados. Com 237 SNPs acurácias da ordem de 0,660 para DAP, 0,555 para altura, 0,743 para volume e 0,743 para IMA foram obtidas. Embora estes resultados sugerem que a SGA teria bom resultado somente entre indivíduos geneticamente relacionados, uma análise conjunta dos dados utilizados para o desenvolvimento dos modelos preditivos anteriormente gerados com os dados das quarto populações aqui avaliadas, se faz necessária para alcançar resultados mais conclusivos. Adicionalmente, a abordagem de seleção de marcas para maximizar a capacidade preditiva ou acurácia deverá ser melhor avaliada à luz do seu impacto na medida que a SGA venha a ser praticada em futuras gerações de seleção. / The potential of genomics to the benefit of applied breeding is the direct use of DNA markers information for selection, allowing equal or higher selection efficiency, higher genetic gains per unit time and cost reduction in phenotyping, when compared with traditional selection based on phenotypic data. Researchers have proposed a new selection method called genome-wide selection (GWS), which has been successfully applied in livestock genetics and promises to revolutionize the improvement of perennial species with long life cycles. This genomic era is bringing new opportunities to forest breeders, but major challenges still need to be overcome for the operational use of GWS. Thus, this study aimed to assess the predictive ability of GWS models previously built for volume growth and wood quality traits based on an elite breeding population of International Paper in Brazil who served as discovery or training population. Predictive models were applied to four populations composed by progeny and clonal trials with contrasting characteristics from the standpoint of relatedness to the training population: (1) a population of individuals genetically related to the training population and (2) a population of individuals genetically unrelated to the training population. Subsequently, the four populations evaluated, with 100 genotyped individuals each, were used to build new models which were cross validated among them. Only SNPs with call rate ≥ 0.90 and MAF (minor allele frequency) ≥ 0.01 were used totaling 29,090 markers. Model previously developed yielded predictive abilities ranging from a lower -0.296 for height growth in genetically unrelated population to 0.440 for DBH and 0.219 for height in a genetically related population. With the GWS models built with the four genotyped populations and applying SNP marker selection based on their estimated effect the highest predictive capabilities were obtained when using an average number of SNPs ranging from 1371 for volume and MAI, to 1467 for DBH. The average predictive ability was maximized at 0.744 for DBH, 0.727 for height growth, 0.751 for volume and 0.752 for MAI. Maximized accuracies were obtained using the smallest number of SNPs with highest effects. With 237 selected SNPs accuracies around 0.660 for DBH, 0.555 for height, 0.743 for volume and 0.743 for MAI were obtained. While these results suggest that GWS should work well only across related individuals, a combined analysis of the data from the previous models with those of the four tested populations is necessary to reach more conclusive results. Furthermore, the approach of SNP marker selection to maximize predictive ability or accuracy is one that is still controversial and should be better evaluated in light of its impact as GWS is practiced in further generations of selection.
5

Avaliação de modelos preditivos de seleção genômica ampla em testes de progênies e testes clonais de Eucalyptus / Assessment of predictive genome-wide selection models in clonal and progeny trials of Eucalyptus

Carla da Costa Garcia 25 February 2016 (has links)
O grande potencial da genômica em benefício do melhoramento genético aplicado é a utilização direta das informações de marcadores de DNA na seleção, de forma a permitir igual ou maior eficiência seletiva, maior rapidez na obtenção de ganhos genéticos e redução de custos de fenotipagem, em comparação com a seleção tradicional. Esta era genômica está trazendo novas oportunidades para os melhoristas florestais, porém desafios ainda existem para o uso operacional da Seleção Genômica Ampla. Sendo assim, este trabalho teve por objetivo avaliar a capacidade preditiva de características de crescimento volumétrico de modelos de SGA previamente construídos para características de crescimento volumétrico e qualidade da madeira com uma população elite de melhoramento genético da International Paper do Brasil que atuou como população de treinamento. Os modelos preditivos foram aplicados em quatro populações de candidatos à seleção constituídos por testes de progênies e teste clonal de Eucalyptus com características contrastantes do ponto de vista de relacionamento genético com a população na qual os modelos foram desenvolvidos: (1) três populações compostas por indivíduos geneticamente relacionados com a população de descoberta e (2) uma população composta por indivíduos geneticamente não relacionados com a população de descoberta. Posteriormente, as quatro populações de avaliação, compostas por 100 indivíduos genotipados em cada uma, foram utilizadas para construir novos modelos preditivos e validações cruzadas realizadas entre estas populações. Foram utilizados para as análises SNPs com frequência de declaração de genótipo (call rate) ≥ 0.90 e MAF (menor frequência alélica) ≥ 0.01, totalizando 29.090 marcadores. O modelo preditivo previamente elaborado para população elite da International Paper apresentou capacidades preditivas que variaram de -0,296 para o caráter Altura em população geneticamente não relacionada até 0,440 para o caráter DAP em uma população geneticamente relacionada. Com os modelos desenvolvidos com as quatro populações genotipadas, e realizando seleção de marcas com base nos seus efeitos, as maiores capacidades preditivas foram obtidas por um número de SNPs médio que variou de 1371 para volume e IMA a 1467 para DAP. Usando esta abordagem, a capacidade preditiva maximizada para DAP foi de 0,744, 0,727 para altura, 0,751 para volume e 0,752 para IMA. Acurácias preditivas maximizadas, foram em seguida estimadas ao utilizar o menor número de SNPs selecionados. Com 237 SNPs acurácias da ordem de 0,660 para DAP, 0,555 para altura, 0,743 para volume e 0,743 para IMA foram obtidas. Embora estes resultados sugerem que a SGA teria bom resultado somente entre indivíduos geneticamente relacionados, uma análise conjunta dos dados utilizados para o desenvolvimento dos modelos preditivos anteriormente gerados com os dados das quarto populações aqui avaliadas, se faz necessária para alcançar resultados mais conclusivos. Adicionalmente, a abordagem de seleção de marcas para maximizar a capacidade preditiva ou acurácia deverá ser melhor avaliada à luz do seu impacto na medida que a SGA venha a ser praticada em futuras gerações de seleção. / The potential of genomics to the benefit of applied breeding is the direct use of DNA markers information for selection, allowing equal or higher selection efficiency, higher genetic gains per unit time and cost reduction in phenotyping, when compared with traditional selection based on phenotypic data. Researchers have proposed a new selection method called genome-wide selection (GWS), which has been successfully applied in livestock genetics and promises to revolutionize the improvement of perennial species with long life cycles. This genomic era is bringing new opportunities to forest breeders, but major challenges still need to be overcome for the operational use of GWS. Thus, this study aimed to assess the predictive ability of GWS models previously built for volume growth and wood quality traits based on an elite breeding population of International Paper in Brazil who served as discovery or training population. Predictive models were applied to four populations composed by progeny and clonal trials with contrasting characteristics from the standpoint of relatedness to the training population: (1) a population of individuals genetically related to the training population and (2) a population of individuals genetically unrelated to the training population. Subsequently, the four populations evaluated, with 100 genotyped individuals each, were used to build new models which were cross validated among them. Only SNPs with call rate ≥ 0.90 and MAF (minor allele frequency) ≥ 0.01 were used totaling 29,090 markers. Model previously developed yielded predictive abilities ranging from a lower -0.296 for height growth in genetically unrelated population to 0.440 for DBH and 0.219 for height in a genetically related population. With the GWS models built with the four genotyped populations and applying SNP marker selection based on their estimated effect the highest predictive capabilities were obtained when using an average number of SNPs ranging from 1371 for volume and MAI, to 1467 for DBH. The average predictive ability was maximized at 0.744 for DBH, 0.727 for height growth, 0.751 for volume and 0.752 for MAI. Maximized accuracies were obtained using the smallest number of SNPs with highest effects. With 237 selected SNPs accuracies around 0.660 for DBH, 0.555 for height, 0.743 for volume and 0.743 for MAI were obtained. While these results suggest that GWS should work well only across related individuals, a combined analysis of the data from the previous models with those of the four tested populations is necessary to reach more conclusive results. Furthermore, the approach of SNP marker selection to maximize predictive ability or accuracy is one that is still controversial and should be better evaluated in light of its impact as GWS is practiced in further generations of selection.
6

Modélisation des données d'enquêtes cas-cohorte par imputation multiple : application en épidémiologie cardio-vasculaire / Modeling of case-cohort data by multiple imputation : application to cardio-vascular epidemiology

Marti soler, Helena 04 May 2012 (has links)
Les estimateurs pondérés généralement utilisés pour analyser les enquêtes cas-cohorte ne sont pas pleinement efficaces. Or, les enquêtes cas-cohorte sont un cas particulier de données incomplètes où le processus d'observation est contrôlé par les organisateurs de l'étude. Ainsi, des méthodes d'analyse pour données manquant au hasard (MA) peuvent être pertinentes, en particulier, l'imputation multiple, qui utilise toute l'information disponible et permet d'approcher l'estimateur du maximum de vraisemblance partielle.Cette méthode est fondée sur la génération de plusieurs jeux plausibles de données complétées prenant en compte les différents niveaux d'incertitude sur les données manquantes. Elle permet d'adapter facilement n'importe quel outil statistique disponible pour les données de cohorte, par exemple, l'estimation de la capacité prédictive d'un modèle ou d'une variable additionnelle qui pose des problèmes spécifiques dans les enquêtes cas-cohorte. Nous avons montré que le modèle d'imputation doit être estimé à partir de tous les sujets complètement observés (cas et non-cas) en incluant l'indicatrice de statut parmi les variables explicatives. Nous avons validé cette approche à l'aide de plusieurs séries de simulations: 1) données complètement simulées, où nous connaissions les vraies valeurs des paramètres, 2) enquêtes cas-cohorte simulées à partir de la cohorte PRIME, où nous ne disposions pas d'une variable de phase-1 (observée sur tous les sujets) fortement prédictive de la variable de phase-2 (incomplètement observée), 3) enquêtes cas-cohorte simulées à partir de la cohorte NWTS, où une variable de phase-1 fortement prédictive de la variable de phase-2 était disponible. Ces simulations ont montré que l'imputation multiple fournissait généralement des estimateurs sans biais des risques relatifs. Pour les variables de phase-1, ils approchaient la précision obtenue par l'analyse de la cohorte complète, ils étaient légèrement plus précis que l'estimateur calibré de Breslow et coll. et surtout que les estimateurs pondérés classiques. Pour les variables de phase-2, l'estimateur de l'imputation multiple était généralement sans biais et d'une précision supérieure à celle des estimateurs pondérés classiques et analogue à celle de l'estimateur calibré. Les résultats des simulations réalisées à partir des données de la cohorte NWTS étaient cependant moins bons pour les effets impliquant la variable de phase-2 : les estimateurs de l'imputation multiple étaient légèrement biaisés et moins précis que les estimateurs pondérés. Cela s'explique par la présence de termes d'interaction impliquant la variable de phase-2 dans le modèle d'analyse, d'où la nécessité d'estimer des modèles d'imputation spécifiques à différentes strates de la cohorte incluant parfois trop peu de cas pour que les conditions asymptotiques soient réunies.Nous recommandons d'utiliser l'imputation multiple pour obtenir des estimations plus précises des risques relatifs, tout en s'assurant qu'elles sont analogues à celles fournies par les analyses pondérées. Nos simulations ont également montré que l'imputation multiple fournissait des estimations de la valeur prédictive d'un modèle (C de Harrell) ou d'une variable additionnelle (différence des indices C, NRI ou IDI) analogues à celles fournies par la cohorte complète / The weighted estimators generally used for analyzing case-cohort studies are not fully efficient. However, case-cohort surveys are a special type of incomplete data in which the observation process is controlled by the study organizers. So, methods for analyzing Missing At Random (MAR) data could be appropriate, in particular, multiple imputation, which uses all the available information and allows to approximate the partial maximum likelihood estimator.This approach is based on the generation of several plausible complete data sets, taking into account all the uncertainty about the missing values. It allows adapting any statistical tool available for cohort data, for instance, estimators of the predictive ability of a model or of an additional variable, which meet specific problems with case-cohort data. We have shown that the imputation model must be estimated on all the completely observed subjects (cases and non-cases) including the case indicator among the explanatory variables. We validated this approach with several sets of simulations: 1) completely simulated data where the true parameter values were known, 2) case-cohort data simulated from the PRIME cohort, without any phase-1 variable (completely observed) strongly predictive of the phase-2 variable (incompletely observed), 3) case-cohort data simulated from de NWTS cohort, where a phase-1 variable strongly predictive of the phase-2 variable was available. These simulations showed that multiple imputation generally provided unbiased estimates of the risk ratios. For the phase-1 variables, they were almost as precise as the estimates provided by the full cohort, slightly more precise than Breslow et al. calibrated estimator and still more precise than classical weighted estimators. For the phase-2 variables, the multiple imputation estimator was generally unbiased, with a precision better than classical weighted estimators and similar to Breslow et al. calibrated estimator. The simulations performed with the NWTS cohort data provided less satisfactory results for the effects where the phase-2 variable was involved: the multiple imputation estimators were slightly biased and less precise than the weighted estimators. This can be explained by the interactions terms involving the phase-2 variable in the analysis model and the necessity of estimating specific imputation models in different strata not including sometimes enough cases to satisfy the asymptotic conditions. We advocate the use of multiple imputation for improving the precision of the risk ratios estimates while making sure they are similar to the weighted estimates.Our simulations also showed that multiple imputation provided estimates of a model predictive value (Harrell's C) or of an additional variable (difference of C indices, NRI or IDI) similar to those obtained from the full cohort.
7

Analysis Of Turkish Stock Market With Markov Regime Switching Volatility Models

Karadag, Mehmet Ali 01 August 2008 (has links) (PDF)
In this study, both uni-regime GARCH and Markov Regime Switching GARCH (SW-GARCH) models are examined to analyze Turkish Stock Market volatility. We investigate various models to find out whether SW-GARCH models are an improvement on the uni-regime GARCH models in terms of modelling and forecasting Turkish Stock Market volatility. As well as using seven statistical loss functions, we apply Superior Predictive Ability (SPA) test of Hansen (2005) and Reality Check test (RC) of White (2000) to compare forecast performance of various models.
8

Comparação da capacidade preditiva de modelos heterocedásticos através da estimação do value-at-risk / Predictive ability comparison of heteroskedastic models by estimating the value-at-risk

Amaro, Raphael Silveira 22 July 2016 (has links)
In an increasingly competitive economic environment, as in the current global context, risk management becomes essential for the survival of companies and investment portfolio managers. Both companies and managers need to have a model that can be able to quantify the risks inherent in their investments in the best possible way in order to guide them in making decisions to get the highest expected return on their investments. Currently, there are several heterogeneous models which seek to quantify risk, making the choice of a particular model very complex. In order to confront and find models that can serve, efficiently, to the quantification of risk, the objective of this research is to compare the predictive ability of five models of conditional heteroskedasticity by estimating the Value-at-Risk, assuming eight different statistical probability distributions, for the series of financial ratios of the capital market of the five largest emerging countries: Brazil, Russia, India, China and South Africa, in the period between February 26, 2001 and December 31, 2015. For this goal was achieved, were held predictions of Value-at-Risk for 50 steps ahead, for all competing models in the study, with adjustment of parameters at every step. Since all the forecasts have been computed for every steps forward, it was possible to compare predictive ability of competing models studied by means of some loss functions. The evidences suggests that heterocedastic Component GARCH is preferable, to make predictions of Value-at-Risk, to all other competing models, however the distribution of statistical probability that this model uses interferes too much in the results of forecasts obtained by it. The data for each financial index studied showed to adapt themselves to a particular different type of probability density function, not reflecting a distribution which can be considered superior to all other. Thus, the results do not provide a single and ideal tool for use in the risk measurement, of generalized form, for all capital markets of emerging countries studied, only provide specific tools to be used in each financial index individually. The results found can be used for the purposes previously described or to elaborate statistical formulas that combine different models estimated in order to get better volatilities forecast measures so that it can measure, more precisely, the market risks. / Em um ambiente econômico cada vez mais competitivo, como é no atual contexto mundial, a gestão de risco torna-se indispensável para a sobrevivência de empresas e de gestores de carteiras de investimento. Tanto as empresas quanto os gestores precisam de um modelo que seja capaz de quantificar os riscos inerentes aos seus investimentos financeiros da melhor maneira possível, de forma a orientá-los na tomada de decisões para que obtenham o maior retorno esperado de seus investimentos. Atualmente, existem inúmeros modelos heterogêneos que buscam quantificar riscos, tornando a escolha de um determinado modelo bastante complexa. Com o intuito de confrontar e encontrar modelos que possam servir, de forma eficiente, à quantificação de riscos, o objetivo desta pesquisa é o de comparar a capacidade preditiva de cinco modelos de heterocedasticidade condicional através da estimação do Value-at-Risk, levando em consideração oito distribuições de probabilidade estatística diferentes, para as séries de índices financeiros do mercado de capitais dos cinco maiores países emergentes: Brasil, Rússia, Índia, China e África do Sul, no período compreendido entre 26 de fevereiro de 2001 e 31 de dezembro de 2015. Para alcançar tal objetivo, realizaram-se previsões do Value-at-Risk para 50 passos à frente, em todos os modelos concorrentes em estudo, com reajuste dos parâmetros a cada passo. Uma vez que todas as previsões foram computadas para todos os passos à frente, foi possível realizar a comparação da capacidade preditiva dos modelos concorrentes estudados por meio de determinadas funções de perda específicas. As evidências encontradas sugerem que o modelo heterocedástico Component GARCH é preferível, para realizar previsões do Value-at-Risk, a todos os outros modelos concorrentes, porém a distribuição de probabilidade estatística que este modelo utiliza interfere demasiadamente nos resultados das previsões obtidas por ele. Os dados de cada índice financeiro estudado mostraram-se adequar-se a um determinado tipo de função de densidade de probabilidade diferente, não refletindo uma distribuição que possa ser considerada superior a todas as outras. Deste modo, os resultados encontrados não oferecem uma ferramenta única e ideal para ser utilizada na mensuração de risco, de forma generalizada, para todos os mercados de capitais dos países emergentes estudados, apenas fornecem ferramentas pontuais para serem utilizadas em cada índice financeiro de forma individual. Os resultados obtidos podem servir para os fins descritos anteriormente ou para elaborar fórmulas estatísticas que combinem diferentes modelos estimados com a finalidade de obter melhores medidas de previsão de volatilidades para que se possa mensurar, de forma mais precisa, os riscos de mercado.
9

Analýza predikční schopnosti vybraných fundamentálních modelů měnového kurzu na základě statistických metod / Evaluation of predictive ability of selected exchange rate models based on statistical methods

Sommer, Josef January 2014 (has links)
This diploma thesis evaluates out-of-sample predictive ability of exchange rate models. The first part of the thesis summarizes existing empirical findings about exchange rate predictability and describes exchange rate models chosen to be evaluated. The second part of the thesis evaluates predictive ability of purchasing power parity, uncovered interest parity, monetary model and Taylor rule model. The exchange rate models are evaluated on CZK/EUR and CZK/USD currency pairs. The analysis is made using quarterly data from 1999 to 2013, while 2009 to 2013 period is reserved for forecast evaluation. The predictive ability of exchange rate models is evaluated in one quarter, one year and three years horizons. The exchange rate models are specified in first differences and estimated by ordinary least squares method. The forecasts are made using rolling regression. The exchange rate models are evaluated using RMSE, Theil's U, CW test and direction of change criterion. The diploma thesis concludes with description of own empirical findings.

Page generated in 0.1262 seconds