• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 43
  • 7
  • Tagged with
  • 359
  • 251
  • 105
  • 80
  • 55
  • 49
  • 48
  • 46
  • 45
  • 39
  • 39
  • 37
  • 36
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Využití prostředků umělé inteligence na kapitálových trzích / The Use of Means of Artificial Intelligence for the Decision Making Support on Stock Market

Hrach, Vlastimil January 2011 (has links)
The diploma thesis deals with artificial intelligence utilization for predictions on stock markets.The prediction is unconventionally based on Bayes' probabilistic model theorem and on its based Naive Bayes classifier. I the practical part algorithm is designed. The algorithm uses recognized relations between identifiers of technical analyze. Concretely exponential running averages at 20 and 50 days had been used. The program output is a graphic forecast of future stock development which is designed on ground of relations classification between the identifiers
312

Využití umělé inteligence na kapitálových trzích / The Use of Artificial Intelligence on Stock Market

Brnka, Radim January 2012 (has links)
The thesis deals with the design and optimization of artificial neural networks (specifically nonlinear autoregressive networks) and their subsequent usage in predictive application of stock market time series.
313

Využití umělé inteligence na kapitálových trzích / The Use of Artificial Intelligence on Stock Market

Lajczyk, Pavel January 2013 (has links)
This master's thesis deals with artificial neural networks and possibilities of their use on stock market. In next chapters of this thesis there are provided design and implementation of stock prices prediction tool. The implementation is done with use of the MATLAB software. The created prediction tool is then tested in a simple trading simulation and achieved results are discussed in the end
314

Hodnocení finanční situace společnosti a návrhy na její zlepšení / Evaluation of the Financial Situation of a Company and Proposals for its Improvement

Hutařová, Dominika January 2013 (has links)
The aim of this thesis is to evaluate the financial situation of the company A.W. spol. s r.o. and with the help of the tools of the financial analysis and under its results propose appropriate measures which will lead to the improvement of the financial situation and to the increase the competitiveness of this company.
315

Využití prostředků umělé inteligence pro podporu na kapitálových trzích / The Use of Means of Artificial Intelligence for the Decision Making Support on Stock Market

Jasanský, Michal January 2013 (has links)
This diploma thesis deals with the prediction of financial time series on capital markets using artificial intelligence methods. There are created several dynamic architectures of artificial neural networks, which are learned and subsequently used for prediction of future movements of shares. Based on the results an assessment and recommendations for working with artificial neural networks are provided.
316

Analýza a predikce vývoje devizových trhů pomocí chaotických atraktorů a neuronových sítí / Analysis and Prediction of Foreign Exchange Markets by Chaotic Attractors and Neural Networks

Pekárek, Jan January 2014 (has links)
This thesis deals with a complex analysis and prediction of foreign exchange markets. It uses advanced artificial intelligence methods, namely neural networks and chaos theory. It introduces unconventional approaches and methods of each of these areas, compares them and uses on a real problem. The core of this thesis is a comparison of several prediction models based on completely different principles and underlying theories. The outcome is then a selection of the most appropriate prediction model called NAR + H. The model is evaluated according to several criteria, the pros and cons are discussed and approximate expected profitability and risk are calculated. All analytical, prediction and partial algorithms are implemented in Matlab development environment and form a unified library of all used functions and scripts. It also may be considered as a secondary main outcome of the thesis.
317

Spotřeba vody z veřejných vodovodů / Water demand in water supply systems

Pikal, Martin January 2014 (has links)
Within this diploma thesis were evaluated factors, affecting consumption of drinking water from water supply system. Evaluation of time series of water consumption and chosen factors was performed using tools of mathematical statistics. In the last step was performed a dependence analysis of water consumption using artificial neuron network ANN. Diploma thesis was solved in cooperation with company Vodárenská akciová společnost, PLC and Severomoravské vodovody a kanalizace Ostrava, PCL.
318

Predikce koroze trubek pece s využitím provozních dat / Prediction of furnace tubes corrosion using operating data

Kolomazník, Milan January 2014 (has links)
The thesis deals with the modeling and prediction of corrosion of radiation tube snake in the heating furnace. Specifically it is focused on vertical cylindrical furnace which is included in the catalytic hydrocracking unit and serves for heating aggressive circulation gas which is the cause of high temperature corrosion. An important basis for the creation of computational models are available records about the operation of the furnace and about the corrosion and degradation mechanisms during the lifetime of the tube system in furnace. Such information enables the creation of a computational model which is based on the prediction of high-temperature corrosive damage of radiation tube snake. The computational model involving all relevant factors may serve as the basis for a predictive life management system of radiation snakes in the heating furnace.
319

Detekce a segmentace mozkového nádoru v multisekvenčním MRI / Brain Tumor Detection and Segmentation in Multisequence MRI

Dvořák, Pavel January 2015 (has links)
Tato práce se zabývá detekcí a segmentací mozkového nádoru v multisekvenčních MR obrazech se zaměřením na gliomy vysokého a nízkého stupně malignity. Jsou zde pro tento účel navrženy tři metody. První metoda se zabývá detekcí prezence částí mozkového nádoru v axiálních a koronárních řezech. Jedná se o algoritmus založený na analýze symetrie při různých rozlišeních obrazu, který byl otestován na T1, T2, T1C a FLAIR obrazech. Druhá metoda se zabývá extrakcí oblasti celého mozkového nádoru, zahrnující oblast jádra tumoru a edému, ve FLAIR a T2 obrazech. Metoda je schopna extrahovat mozkový nádor z 2D i 3D obrazů. Je zde opět využita analýza symetrie, která je následována automatickým stanovením intenzitního prahu z nejvíce asymetrických částí. Třetí metoda je založena na predikci lokální struktury a je schopna segmentovat celou oblast nádoru, jeho jádro i jeho aktivní část. Metoda využívá faktu, že většina lékařských obrazů vykazuje vysokou podobnost intenzit sousedních pixelů a silnou korelaci mezi intenzitami v různých obrazových modalitách. Jedním ze způsobů, jak s touto korelací pracovat a používat ji, je využití lokálních obrazových polí. Podobná korelace existuje také mezi sousedními pixely v anotaci obrazu. Tento příznak byl využit v predikci lokální struktury při lokální anotaci polí. Jako klasifikační algoritmus je v této metodě použita konvoluční neuronová síť vzhledem k její známe schopnosti zacházet s korelací mezi příznaky. Všechny tři metody byly otestovány na veřejné databázi 254 multisekvenčních MR obrazech a byla dosáhnuta přesnost srovnatelná s nejmodernějšími metodami v mnohem kratším výpočetním čase (v řádu sekund při použitý CPU), což poskytuje možnost manuálních úprav při interaktivní segmetaci.
320

Souběžné učení v koevolučních algoritmech / Colearning in Coevolutionary Algorithms

Wiglasz, Michal January 2015 (has links)
Cartesian genetic programming (CGP) is a form of genetic programming where candidate programs are represented in the form of directed acyclic graphs. It was shown that CGP can be accelerated using coevolution with a population of fitness predictors which are used to estimate the quality of candidate solutions. The major disadvantage of the coevolutionary approach is the necessity of performing many time-consuming experiments to determine the best size of the fitness predictor for the particular task. This project introduces a new fitness predictor representation with phenotype plasticity, based on the principles of colearning in evolutionary algorithms. Phenotype plasticity allows to derive various phenotypes from the same genotype. This allows to adapt the size of the predictors to the current state of the evolution and difficulty of the solved problem. The proposed algorithm was implemented in the C language and optimized using SSE2 and AVX2 vector instructions. The experimental results show that the resulting image filters are comparable with standard CGP in terms of filtering quality. The average speedup is 8.6 compared to standard CGP. The speed is comparable to standard coevolutionary CGP but it is not necessary to experimentally determine the best size of the fitness predictor while applying coevolution to a new, unknown task.

Page generated in 0.0468 seconds