• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Redes neuronales y preprocesado de variables para modelos y sensores en bioingeniería

Mateo Jiménez, Fernando 19 July 2012 (has links)
El propósito de esta Tesis Doctoral es proponer una alternativa viable a la aproximación de modelos y procesos en el ámbito científico y, más concretamente, en aplicaciones complejas de bioingeniería, en las cuales es imposible o muy costoso encontrar una relación directa entre las señales de entrada y de salida mediante modelos matemáticos sencillos o aproximaciones estadísticas. Del mismo modo, es interesante lograr una compactación de los datos que necesita un modelo para conseguir una predicción o clasificación en un tiempo y con un coste de implementación mínimos. Un modelo puede ser simplificado en gran medida al reducir el número de entradas o realizar operaciones matemáticas sobre éstas para transformarlas en nuevas variables. En muchos problemas de regresión (aproximación de funciones), clasificación y optimización, en general se hace uso de las nuevas metodologías basadas en la inteligencia artificial. La inteligencia artificial es una rama de las ciencias de la computación que busca automatizar la capacidad de un sistema para responder a los estímulos que recibe y proponer salidas adecuadas y racionales. Esto se produce gracias a un proceso de aprendizaje, mediante el cual se presentan ciertas muestras o �ejemplos� al modelo y sus correspondientes salidas y éste aprende a proponer las salidas correspondientes a nuevos estímulos que no ha visto previamente. Esto se denomina aprendizaje supervisado. También puede darse el caso de que tal modelo asocie las entradas con características similares entre sí para obtener una clasificación de las muestras de entrada sin necesidad de un patrón de salida. Este modelo de aprendizaje se denomina no supervisado. El principal exponente de la aplicación de la inteligencia artificial para aproximación de funciones y clasificación son las redes neuronales artificiales. Se trata de modelos que han demostrado sobradamente sus ventajas en el ámbito del modelado estadístico y de la predicción frente a otros métodos clásicos. N / Mateo Jiménez, F. (2012). Redes neuronales y preprocesado de variables para modelos y sensores en bioingeniería [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16702

Page generated in 0.0446 seconds