Spelling suggestions: "subject:"aprendizaje máquina"" "subject:"prendizaje máquina""
1 |
Arquitectura de visión y aprendizaje para el reconocimiento de actividades de grupos usando descriptores de movimientoBorja, Luis Felipe 25 June 2020 (has links)
Según los últimos censos, nuestro planeta tiene cerca de 7.000 millones de habitantes principalmente concentrados en zonas urbanas. Consecuencia de esto las multitudes de personas se congregan en estos sitios, complicando la tarea de supervisión y vigilancia para mantener la seguridad pública en calles, plazas, avenidas y demás. Esto motiva el estudio y mejora de métodos de análisis automático del comportamiento humano. A esta área de investigación se le denomina Análisis del Comportamiento Humano, o Reconocimiento de Actividades Humanas. Gran parte de los trabajos dedicados a este problema se basan en técnicas de visión por computador junto con algoritmos de Machine Learning y, más recientemente, en Deep Learning. En este proyecto de tesis, se ha hecho inicialmente una revisión del estado del arte respecto al tema del análisis y reconocimiento de actividades y comportamientos humanos. En este estudio se han analizado los principales trabajos de machine learning tradicional y deep learning para el tema de la tesis, así como los principales datasets. Se ha visto que no existe un estándar o arquitectura que proponga solución genérica. Por otro lado, la mayoría de trabajos se centran en un determinado rango de individuos, habiendo propuestas para personas individuales, para pequeños grupos, grandes grupos o multitudes. Además, no existe un consenso en la nomenclatura respecto a los grados de complejidad, niveles de comportamiento o, como aquí se denomina, nivel de semántica de las acciones que se realizan. Tras este estudio, se ha propuesto una taxonomía bidimensional que permite clasificar las propuestas en el espacio "número de personas/nivel de semántica", siendo más descriptivo respecto al actual estado del arte y permitiendo ver donde se concentran mayormente los trabajos y cuales los retos aun no resueltos. Tras el estudio del estado del arte, en este trabajo se ha propuesto una arquitectura de visión y aprendizaje para reconocer actividades de grupos usando descriptores de movimiento. Se compone de dos bloques principales, el descriptor de movimiento y el clasificador de actividad. Las arquitecturas de red profunda que se estudian actualmente tienen la bondad de, dados unos datos en crudo (imágenes, secuencias, etc.) tratarlos internamente de forma que devuelvan un resultado, sin necesidad de pre-procesarlos primero. Sin embargo, esto los hace dependientes de los datos de entrenamiento y necesitan grandes datasets para que el entrenamiento sea suficiente. El hecho de introducir un descriptor hace que el espacio de búsqueda se reduzca, y por lo tanto se pueda entrenar con menor número de datos, y además, se pueda independizar la escena (número de individuos, localización de la actividad en el espacio, etc.) del comportamiento en sí. Para el descriptor de la arquitectura se propone en esta tesis como una variante del descriptor Activity Descriptor Vector (ADV), que se denomina D-ADV, y que obtiene dos imágenes del movimiento local acumulado, una UDF (de los movimientos arriba, Up, abajo, Down, y Frecuencia) y otra LRF (de los movimientos Left, izquierda, Right, derecha y Frecuencia). Por otro lado, como instancias de la arquitectura haciendo uso del D-ADV, se proponen el D-ADV-MultiClass para clasificación de múltiples clases. Esta propuesta se basa en utilizar los dos streams UDF y LRF, junto con una red profunda y transfer learning, para reconocer la actividad del grupo. Además, se ha propuesto otra instancia, llamada D-ADV-OneClass, que añade a los dos streams anteriores, otro con información de contexto. Esta última instancia da solución a problemas en los que solo se conoce una clase durante el entrenamiento, y por lo tanto se utilizan técnicas de one-class classification. En la experimentación se ha validado la arquitectura con las dos instancias D-ADV-MultiClass y D-ADV-OneClass utilizando los datasets públicos ampliamente conocidos, como son BEHAVE, INRIA y CAVIAR para multi-class, y para one-class los datasets Ped 1, Ped 2 y Avenue. Los resultados experimentales muestran la capacidad de la arquitectura para clasificar las actividades de los grupos presentados en los datasets. Además, se demuestra que la arquitectura es capaz de tener buenos resultados utilizando datasets con poca cantidad de datos. En este caso, no a partir de la imagen sino de la representación del movimiento. Por último se plantean como trabajos futuros experimentar con otros datasets de mayor tamaño o con otro tipo de datos (peleas callejeras y en rings de boxeo para ver como afecta el contexto en estas situaciones). A medio o largo plazo se realizarán mejoras aumentando y comprobando otras instancias de la arquitectura utilizando múltiples streams de entrada que puedan permitir detectar otros comportamientos.
|
2 |
Redes neuronales y preprocesado de variables para modelos y sensores en bioingenieríaMateo Jiménez, Fernando 19 July 2012 (has links)
El propósito de esta Tesis Doctoral es proponer una alternativa viable a la aproximación de
modelos y procesos en el ámbito científico y, más concretamente, en aplicaciones complejas de
bioingeniería, en las cuales es imposible o muy costoso encontrar una relación directa entre
las señales de entrada y de salida mediante modelos matemáticos sencillos o aproximaciones
estadísticas.
Del mismo modo, es interesante lograr una compactación de los datos que necesita un
modelo para conseguir una predicción o clasificación en un tiempo y con un coste de implementación
mínimos. Un modelo puede ser simplificado en gran medida al reducir el número
de entradas o realizar operaciones matemáticas sobre éstas para transformarlas en nuevas
variables.
En muchos problemas de regresión (aproximación de funciones), clasificación y optimización,
en general se hace uso de las nuevas metodologías basadas en la inteligencia artificial. La inteligencia
artificial es una rama de las ciencias de la computación que busca automatizar la
capacidad de un sistema para responder a los estímulos que recibe y proponer salidas adecuadas
y racionales. Esto se produce gracias a un proceso de aprendizaje, mediante el cual
se presentan ciertas muestras o �ejemplos� al modelo y sus correspondientes salidas y éste
aprende a proponer las salidas correspondientes a nuevos estímulos que no ha visto previamente.
Esto se denomina aprendizaje supervisado. También puede darse el caso de que tal
modelo asocie las entradas con características similares entre sí para obtener una clasificación
de las muestras de entrada sin necesidad de un patrón de salida. Este modelo de aprendizaje
se denomina no supervisado.
El principal exponente de la aplicación de la inteligencia artificial para aproximación de
funciones y clasificación son las redes neuronales artificiales. Se trata de modelos que han
demostrado sobradamente sus ventajas en el ámbito del modelado estadístico y de la predicción
frente a otros métodos clásicos.
N / Mateo Jiménez, F. (2012). Redes neuronales y preprocesado de variables para modelos y sensores en bioingeniería [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16702
|
3 |
Kernel Methods for Nonlinear Identification, Equalization and Separation of SignalsVaerenbergh, Steven Van 03 February 2010 (has links)
En la última década, los métodos kernel (métodos núcleo) han demostrado ser técnicas muy eficaces en la resolución de problemas no lineales. Parte de su éxito puede atribuirse a su sólida base matemática dentro de los espacios de Hilbert generados por funciones kernel ("reproducing kernel Hilbert spaces", RKHS); y al hecho de que resultan en problemas convexos de optimización. Además, son aproximadores universales y la complejidad computacional que requieren es moderada. Gracias a estas características, los métodos kernel constituyen una alternativa atractiva a las técnicas tradicionales no lineales, como las series de Volterra, los polinómios y las redes neuronales. Los métodos kernel también presentan ciertos inconvenientes que deben ser abordados adecuadamente en las distintas aplicaciones, por ejemplo, las dificultades asociadas al manejo de grandes conjuntos de datos y los problemas de sobreajuste ocasionados al trabajar en espacios de dimensionalidad infinita.En este trabajo se desarrolla un conjunto de algoritmos basados en métodos kernel para resolver una serie de problemas no lineales, dentro del ámbito del procesado de señal y las comunicaciones. En particular, se tratan problemas de identificación e igualación de sistemas no lineales, y problemas de separación ciega de fuentes no lineal ("blind source separation", BSS). Esta tesis se divide en tres partes. La primera parte consiste en un estudio de la literatura sobre los métodos kernel. En la segunda parte, se proponen una serie de técnicas nuevas basadas en regresión con kernels para resolver problemas de identificación e igualación de sistemas de Wiener y de Hammerstein, en casos supervisados y ciegos. Como contribución adicional se estudia el campo del filtrado adaptativo mediante kernels y se proponen dos algoritmos recursivos de mínimos cuadrados mediante kernels ("kernel recursive least-squares", KRLS). En la tercera parte se tratan problemas de decodificación ciega en que las fuentes son dispersas, como es el caso en comunicaciones digitales. La dispersidad de las fuentes se refleja en que las muestras observadas se agrupan, lo cual ha permitido diseñar técnicas de decodificación basadas en agrupamiento espectral. Las técnicas propuestas se han aplicado al problema de la decodificación ciega de canales MIMO rápidamente variantes en el tiempo, y a la separación ciega de fuentes post no lineal. / In the last decade, kernel methods have become established techniques to perform nonlinear signal processing. Thanks to their foundation in the solid mathematical framework of reproducing kernel Hilbert spaces (RKHS), kernel methods yield convex optimization problems. In addition, they are universal nonlinear approximators and require only moderate computational complexity. These properties make them an attractive alternative to traditional nonlinear techniques such as Volterra series, polynomial filters and neural networks.This work aims to study the application of kernel methods to resolve nonlinear problems in signal processing and communications. Specifically, the problems treated in this thesis consist of the identification and equalization of nonlinear systems, both in supervised and blind scenarios, kernel adaptive filtering and nonlinear blind source separation.In a first contribution, a framework for identification and equalization of nonlinear Wiener and Hammerstein systems is designed, based on kernel canonical correlation analysis (KCCA). As a result of this study, various other related techniques are proposed, including two kernel recursive least squares (KRLS) algorithms with fixed memory size, and a KCCA-based blind equalization technique for Wiener systems that uses oversampling. The second part of this thesis treats two nonlinear blind decoding problems of sparse data, posed under conditions that do not permit the application of traditional clustering techniques. For these problems, which include the blind decoding of fast time-varying MIMO channels, a set of algorithms based on spectral clustering is designed. The effectiveness of the proposed techniques is demonstrated through various simulations.
|
Page generated in 0.0768 seconds