• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Materiais nanoestruturados do tipo IV e III-V dopados com Mn / Nanostructured materials of type IV and III-V doped with Mn.

Arantes Junior, Jeverson Teodoro 04 December 2007 (has links)
No presente trabalho, investigamos propriedades eletr^onicas, estruturais e de transporte de nanoestruturas do tipo IV e tipo III-V usando c´alculos de primeiros princ´?pios. (I) Como ponto de partida, verificamos sistematicamente a estabilidade do Mn substitucional nas camadas de Ge em uma heteroestrutura de Si/Ge. Estudamos a intera¸c~ao magn´etica Mn-Mn relativa a varia¸c~ao do par^ametro de rede do substrato, indicando uma mudan¸ca na diferen¸ca de energia entre as configura¸c~oes de alto e baixo spin. Para um substrato com par^ametro de rede igual ao do Si, esta diferen¸ca de energia favorece a configura¸c~ao de baixo spin, entretanto com o aumento do par^ametro de rede a configura¸c~ao com alto spin passa a ser a mais est´avel. (II) No estudo de nanofios de Ge, crescidos nas dire¸c~oes [110] e [111], verificamos a depend^encia do gap de energia em rela¸c~ao ao di^ametro do mesmo. Estudamos a reconstru ¸c~ao da superf´?cie (001) para alguns di^ametros de nanofios crescidos na dire¸c~ao [110]. Fizemos um estudo sistem´atico da dopagem de Mn em nanofios de Ge para verificar quais os s´?tios mais est´aveis para a impureza. Investigamos, tamb´em, o acoplamento magn´etico Mn-Mn ao longo da dire¸c~ao de crescimento do fio e radialmente ao mesmo, para diferentes dist^ancias entre os dopantes. (III) A observa¸c~ao de part´?culas de ouro na superf´?cie dos nanofios, vindas da gota de Au utilizada como catalizador no processo de crescimento dos fios, serviu como motiva¸c~ao para o estudo da energia de forma¸c~ao do mesmo em diferentes posi¸c~oes e concentra¸c~oes nos nanofios. Esses resultados possibilitaram-nos o entendimento de como o Au se difunde nos nanofios, se atrav´es da superf´?cie ou pelo interior do fio em situa¸c~oes com maiores e menores concentra¸c~oes do metal. (IV) Verificamos o comportamento da dopagem tipo-n e tipo-p nas propriedades de transporte eletr^onico para as impurezas na regi~ao central e na superf´?cie (001) de nanofios de Ge. Devido a import^ancia da superf´?cie em nanoestruturas, calculamos a varia¸c~ao da transmit^ancia eletr^onica na presen¸ca de liga¸c~oes incompletas conjuntamente com a adsor¸c~ao de uma mol´ecula de OH. (V) Investigamos como o confinamento qu^antico altera o comportamento de defeitos nativos tipo vac^ancias em nanofios de Si. Atrav´es da energia de forma¸c~ao para diferentes s´?tios n~ao equivalentes, verificamos um poss´?vel caminho de migra¸c~ao da vac^ancia para a superf´?cie (001). Calculamos o valor da barreira de migra¸c~ao das regi~oes centrais para a super´?cie (001) do nanofio assim como o valor do U-efetivo que no bulk ´e negativo. (VI) Finalmente, realizamos um estudo sistem´atico de nanofios de materiais III-V (InP e GaAs) e nanopart´?culas de InAs dopadas com Mn. Verificamos as posi¸c~oes de equil´?brio e a possibilidade de uma ordem magn´etica para as impurezas na nanoestrutura. Para as nanopart´?culas, `a medida que o sistema ´e confinado, ocorre uma maior localiza¸c~ao dos estados de buraco e consequentemente uma diminui¸c~ao na diferen¸ca de energia entre as configura¸c~oes com alto e baixo spin, favor´avel ao alto spin. Atrav´es da inser¸c~ao de \"buracos\"podemos aumentar essa diferen¸ca de energia. / In the present work, we investigate electronic, structural and transport properties of semiconductor nanostructures of type IV and III-V using first principles calculations. (I) As a starting point, we verify systematically the stability of substitutional Mn in Ge layers in Si/Ge heterostructures. We study the Mn-Mn magnetic interaction as a function of the lattice parameter of the substrate, and we find that the energy difference between the high and low spin configurations changes as the lattice parameter is modified. Using Si as a substrate, that energy difference favors the low spin configuration, whereas increasing the substrate lattice parameter the high spin configuration becomes more stable. (II) In the study of Ge nanowires, grown along the [110] and [111] directions, we investigate the variation of the energy gap as a function of the nanowire diameter. We study the (001) surface reconstruction for some nanowire diameters grown along the [110] direction. We did a systematic study of Mn doping in the Ge nanowires in order to verify which are the most stable substitutional sites. We also study the Mn-Mn magnetic coupling for their separation parallel to the growth direction as well as perpendicular to it. This study was performed for different distances between the impurities. (III) The gold particles observed in the top surface of the nanowires, a result of the Au droplet used as catalyst in the growth process, was the motivation of the study of the formation energy of Au isolated impurities in different positions and concentrations in the nanowires. These results make it possible to know if the Au atoms will move either along the surface or towards the bulk of the wire. (IV) We verify the behavior of the type-n and type-p doping in the electronic transmission properties for impurities positioned either in the central or in the (001) surface of Ge nanowires. Because of the importance of the surface in nanostructures, we calculate the changes in the electronic transmittance in the presence of a dangling bond and an OH molecule adsorbed in the surface. (V) We investigate how the quantum confinement modifies the behavior of the vacancy native defect in Si nanowires. From the formation energy difference for nonequivalent sites, we verify one possible pathway for the vacancy migration towards the (001) surface, and we calculate the migration barrier from the central region to the nanowire surface. We also calculate the effective-U, and find it to be negative in the bulk region. (VI) Finally, we also made a systematic study of nanowires of type III-V (InP and GaAs) as well as InAs nanoparticles doped with Mn. We study the equilibrium positions and the possibility of a magnetic order for the impurity in these nanostructures. For the nanoparticles, when the system is more confined the hole becomes more localized and, consequently, the energy difference between the high and low spin configuration still favors the high spin but becomes smaller. When we insert holes we can increase this energy difference.
2

Materiais nanoestruturados do tipo IV e III-V dopados com Mn / Nanostructured materials of type IV and III-V doped with Mn.

Jeverson Teodoro Arantes Junior 04 December 2007 (has links)
No presente trabalho, investigamos propriedades eletr^onicas, estruturais e de transporte de nanoestruturas do tipo IV e tipo III-V usando c´alculos de primeiros princ´?pios. (I) Como ponto de partida, verificamos sistematicamente a estabilidade do Mn substitucional nas camadas de Ge em uma heteroestrutura de Si/Ge. Estudamos a intera¸c~ao magn´etica Mn-Mn relativa a varia¸c~ao do par^ametro de rede do substrato, indicando uma mudan¸ca na diferen¸ca de energia entre as configura¸c~oes de alto e baixo spin. Para um substrato com par^ametro de rede igual ao do Si, esta diferen¸ca de energia favorece a configura¸c~ao de baixo spin, entretanto com o aumento do par^ametro de rede a configura¸c~ao com alto spin passa a ser a mais est´avel. (II) No estudo de nanofios de Ge, crescidos nas dire¸c~oes [110] e [111], verificamos a depend^encia do gap de energia em rela¸c~ao ao di^ametro do mesmo. Estudamos a reconstru ¸c~ao da superf´?cie (001) para alguns di^ametros de nanofios crescidos na dire¸c~ao [110]. Fizemos um estudo sistem´atico da dopagem de Mn em nanofios de Ge para verificar quais os s´?tios mais est´aveis para a impureza. Investigamos, tamb´em, o acoplamento magn´etico Mn-Mn ao longo da dire¸c~ao de crescimento do fio e radialmente ao mesmo, para diferentes dist^ancias entre os dopantes. (III) A observa¸c~ao de part´?culas de ouro na superf´?cie dos nanofios, vindas da gota de Au utilizada como catalizador no processo de crescimento dos fios, serviu como motiva¸c~ao para o estudo da energia de forma¸c~ao do mesmo em diferentes posi¸c~oes e concentra¸c~oes nos nanofios. Esses resultados possibilitaram-nos o entendimento de como o Au se difunde nos nanofios, se atrav´es da superf´?cie ou pelo interior do fio em situa¸c~oes com maiores e menores concentra¸c~oes do metal. (IV) Verificamos o comportamento da dopagem tipo-n e tipo-p nas propriedades de transporte eletr^onico para as impurezas na regi~ao central e na superf´?cie (001) de nanofios de Ge. Devido a import^ancia da superf´?cie em nanoestruturas, calculamos a varia¸c~ao da transmit^ancia eletr^onica na presen¸ca de liga¸c~oes incompletas conjuntamente com a adsor¸c~ao de uma mol´ecula de OH. (V) Investigamos como o confinamento qu^antico altera o comportamento de defeitos nativos tipo vac^ancias em nanofios de Si. Atrav´es da energia de forma¸c~ao para diferentes s´?tios n~ao equivalentes, verificamos um poss´?vel caminho de migra¸c~ao da vac^ancia para a superf´?cie (001). Calculamos o valor da barreira de migra¸c~ao das regi~oes centrais para a super´?cie (001) do nanofio assim como o valor do U-efetivo que no bulk ´e negativo. (VI) Finalmente, realizamos um estudo sistem´atico de nanofios de materiais III-V (InP e GaAs) e nanopart´?culas de InAs dopadas com Mn. Verificamos as posi¸c~oes de equil´?brio e a possibilidade de uma ordem magn´etica para as impurezas na nanoestrutura. Para as nanopart´?culas, `a medida que o sistema ´e confinado, ocorre uma maior localiza¸c~ao dos estados de buraco e consequentemente uma diminui¸c~ao na diferen¸ca de energia entre as configura¸c~oes com alto e baixo spin, favor´avel ao alto spin. Atrav´es da inser¸c~ao de \"buracos\"podemos aumentar essa diferen¸ca de energia. / In the present work, we investigate electronic, structural and transport properties of semiconductor nanostructures of type IV and III-V using first principles calculations. (I) As a starting point, we verify systematically the stability of substitutional Mn in Ge layers in Si/Ge heterostructures. We study the Mn-Mn magnetic interaction as a function of the lattice parameter of the substrate, and we find that the energy difference between the high and low spin configurations changes as the lattice parameter is modified. Using Si as a substrate, that energy difference favors the low spin configuration, whereas increasing the substrate lattice parameter the high spin configuration becomes more stable. (II) In the study of Ge nanowires, grown along the [110] and [111] directions, we investigate the variation of the energy gap as a function of the nanowire diameter. We study the (001) surface reconstruction for some nanowire diameters grown along the [110] direction. We did a systematic study of Mn doping in the Ge nanowires in order to verify which are the most stable substitutional sites. We also study the Mn-Mn magnetic coupling for their separation parallel to the growth direction as well as perpendicular to it. This study was performed for different distances between the impurities. (III) The gold particles observed in the top surface of the nanowires, a result of the Au droplet used as catalyst in the growth process, was the motivation of the study of the formation energy of Au isolated impurities in different positions and concentrations in the nanowires. These results make it possible to know if the Au atoms will move either along the surface or towards the bulk of the wire. (IV) We verify the behavior of the type-n and type-p doping in the electronic transmission properties for impurities positioned either in the central or in the (001) surface of Ge nanowires. Because of the importance of the surface in nanostructures, we calculate the changes in the electronic transmittance in the presence of a dangling bond and an OH molecule adsorbed in the surface. (V) We investigate how the quantum confinement modifies the behavior of the vacancy native defect in Si nanowires. From the formation energy difference for nonequivalent sites, we verify one possible pathway for the vacancy migration towards the (001) surface, and we calculate the migration barrier from the central region to the nanowire surface. We also calculate the effective-U, and find it to be negative in the bulk region. (VI) Finally, we also made a systematic study of nanowires of type III-V (InP and GaAs) as well as InAs nanoparticles doped with Mn. We study the equilibrium positions and the possibility of a magnetic order for the impurity in these nanostructures. For the nanoparticles, when the system is more confined the hole becomes more localized and, consequently, the energy difference between the high and low spin configuration still favors the high spin but becomes smaller. When we insert holes we can increase this energy difference.
3

[en] ATOMICALLY THIN SEMICONDUCTING TRANSITION-METAL DICHALCOGENIDES: FROM SYNTHESIS TO ELECTRO-OPTICAL PROPERTIES / [pt] DICHALCOGENETOS DE METAL DE TRANSIÇÃO SEMICONDUTORES ATOMICAMENTE FINOS: DA SÍNTESE ÀS PROPRIEDADES ELETRO-ÓPTICAS

SYED HAMZA SAFEER GARDEZI 29 December 2020 (has links)
[pt] O objetivo deste trabalho foi desenvolver métodos eficientes e reprodutíveis de crescimento de monocamadas de WS2, MoS2 e outras heteroestruturas verticais por deposição química em fase de vapor à pressão atmosférica (APCVD). A monocamada separada destes materiais tem grande importância na fabricação de novos dispositivos óticos e Nano eletrônicos. Dispositivos finos e de baixo custo necessitam temperaturas em torno de 800 graus celsius, o que é um problema para aplicações mencionadas acima. Nesta tese, nós propusemos uma nova rota usando APCVD para crescer monocamadas de MoS2 a 550 graus celsius, usando sódio como catalisador. Nós produzimos monocristais e poli cristais controlando a razão de precursores NaNO3/MoO3 e tempo de crescimento. Usando cálculos de primeiros princípios, mostramos que o sódio atua como centro de nucleação para o processo de síntese. A razão de precursores é crucial para diminuir a energia de formação e a temperatura de síntese. Cálculos de primeiros princípios e experimentos concordam que uma razão ideal é em torno de 0.3, proporcionando uma queda de 250 graus celsius na temperatura de crescimento. Nós investigamos as amostras crescidas por APCVD usando espectroscopia de fotoelétrons induzidos por raios-X, microscopia de força atômica, espectroscopia Raman, fotoluminescência e mediadas de transporte. Dicalcogenetos de metais de transição (TMD) dispostos em poucas camadas permitem-nos criar materiais e estudar novos fenômenos físicos. A sequência de empilhamento dos TMDs pode modificar suas propriedades opticas e elétricas. Também sintetizamos poucas camadas de MoS2 e WS2 usando APCVD. Duas e três camadas de WS2, MoS2 e suas heteroestruturas verticais foram caracterizadas através de geração de segundo harmônico (SHG). SHG mostra que as bicamadas crescidas com ângulos de rotação relativos de 0 grau e 60 graus possuem diferentes fases de empilhamento. O SHG do empilhamento bicamada com ângulo relativo de 0 graus aumentos, enquanto para amostras com empilhamento de 60 graus foi zerado. Este comportamento do SHG sugere que duas camadas de MoS2 ou WS2, quando empilhados a 0 graus não possuem simetria de inversão para 3R(AB) entre as camadas inferiores e superiores, enquanto as camadas de 60 graus possuem simetria de inversão (centrossimétricas) e possuem empilhamento na forma 2H(AA). Finalmente, dispositivos foram fabricados em amostras de boa qualidade para a investigação de sua performance elétrica. Os dispositivos mostram comportamento típico tipo-n e sua mobilidade foi estimada a partir das curvas de transporte. A dependência dos modos Raman das nossas amostras de heteroestruturas também foi estudada. Aplicando uma tensão nos dispositivos, o modo A1 mostrou um desvio para o azul e um novo modo surge em 410 cm-1, atribuídos defeitos (D) no cristal. / [en] The aim of this work was to develop reliable and repeatable methods for growing high-quality monolayer MoS2, WS2, and their vertical heterostructure by atmospheric pressure chemical vapor deposition (APCVD) technique. The monolayer of these materials have vital importance in the fabrication of new optical and nanoelectronic devices. Thin and low-cost devices have increased the demand for new synthesis processes. Usually, the synthesis requires temperatures around 800 Celsius degrees, which is an issue for applications mentioned above. In this thesis, we propose a new route using the APCVD technique to grow monolayers of MoS2 at 550 Celsius degrees mediated by sodium as a catalyst. We have produced single crystals and polycrystals by controlling the NaNO3/MoO3 precursor s ratio and growth time. Using first-principles calculations, we find out that sodium is the nucleation site of the growth process. The precursor s ratio is crucial to decrease the energy formation and the synthesis temperature. Firstprinciples calculations and experiments agree with the ideal precursor s rate of 0.3 and with the decrease of the synthesis temperature of 250 Celsius degrees. We investigated the CVD grown sample with X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, photoluminescence spectroscopy, and transport experiments. Few layers of TMDs allow us to create new materials and find new physical phenomena. The stacking sequence in few-layer TMDs can significantly impact on their electrical and optical properties.We also synthesized few layers of MoS2 and WS2 via APCVD. Two and three layers of MoS2, WS2, and their vertical heterostructures were characterized by second harmonic generation (SHG). The SHG shows that the layers in bilayers grow with 0 degrees or 60 degrees has different phase stacking. The SHG from 0 degrees stacked bilayer has increased when compared to monolayer, while the generated signal from bilayer with 60 degrees stacking is zero. This behavior of SHG suggests that the two layers of MoS2 or WS2 when stacked at 0 degrees have no inversion symmetry to 3R(AB) phase stacking between the top layer and the bottom layer. While when stacked with 60 degrees has inversion symmetry (Centrosymmetric) and have 2H(AA0) phase stacking. Finally, the devices were fabricated on good quality samples to investigate their electrical performance. The fabricated devices show typical n-type behavior and mobility was estimated by measuring transport curves. The dependence of Raman modes of our heterostructure device with electron doping was also studied. By applying a voltage across our device the A1 mode shows blueshift and a new mode emerges at ~ 410 cm-1, which is attributed to the defects (D) in the crystal.

Page generated in 0.0494 seconds