• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conductive Anodic Filament (CAF) Formation

Caputo, Antonio 18 January 2012 (has links)
Conductive anodic filament (CAF) is a failure mode in printed wiring boards (PWBs) which occurs under high humidity and high voltage gradient conditions. The filament, a copper salt, grows from anode to cathode along the epoxy-glass interface. Ready and Turbini (2000) identified this copper salt as the Cu2(OH)3Cl, atacamite compound. This work has investigated the influence of polyethylene glycol (PEG) and polyethylene propylene glycol (PEPG) fluxing agents on the chemical nature of CAF. For coupons processed with PEPG flux, with and without chloride, a copper-chloride containing compound was formed in the polymer matrix. This compound was characterized using x-ray photoelectron spectroscopy (XPS) as CuCl and an electrochemical mechanism for the formation of the chloride-containing CAF has been proposed. For PEG flux, with and without chloride, it has been shown that CAF only formed, but no copper containing compound formed in the matrix. It appears for PEG fluxed coupons, a PEG-Cu-Cl complex forms, binds the available Cu and acts as a barrier to the formation of CuCl in the polymer matrix. Meeker and Lu Valle (1995) have previously proposed that CAF failure is best represented by two competing reactions – the formation of a copper chloride corrosion compound (now identified as Cu2(OH)3Cl) and the formation of innocuous trapped chlorine compounds. Since no evidence of any trapped chloride compounds has been found, we propose that the formation of CAF is best represented by a single non-reversible reaction. For coupons processed with a high bromide-containing flux, bromide containing CAF was created and characterized using transmission electron microscopy (TEM) to be Cu2(OH)3Br. In addition, a copper-containing compound was formed in the polymer matrix and characterized using XPS as CuBr. An electrochemical mechanism for the formation of bromide-containing CAF has been proposed based on the XPS data. .
2

Conductive Anodic Filament (CAF) Formation

Caputo, Antonio 18 January 2012 (has links)
Conductive anodic filament (CAF) is a failure mode in printed wiring boards (PWBs) which occurs under high humidity and high voltage gradient conditions. The filament, a copper salt, grows from anode to cathode along the epoxy-glass interface. Ready and Turbini (2000) identified this copper salt as the Cu2(OH)3Cl, atacamite compound. This work has investigated the influence of polyethylene glycol (PEG) and polyethylene propylene glycol (PEPG) fluxing agents on the chemical nature of CAF. For coupons processed with PEPG flux, with and without chloride, a copper-chloride containing compound was formed in the polymer matrix. This compound was characterized using x-ray photoelectron spectroscopy (XPS) as CuCl and an electrochemical mechanism for the formation of the chloride-containing CAF has been proposed. For PEG flux, with and without chloride, it has been shown that CAF only formed, but no copper containing compound formed in the matrix. It appears for PEG fluxed coupons, a PEG-Cu-Cl complex forms, binds the available Cu and acts as a barrier to the formation of CuCl in the polymer matrix. Meeker and Lu Valle (1995) have previously proposed that CAF failure is best represented by two competing reactions – the formation of a copper chloride corrosion compound (now identified as Cu2(OH)3Cl) and the formation of innocuous trapped chlorine compounds. Since no evidence of any trapped chloride compounds has been found, we propose that the formation of CAF is best represented by a single non-reversible reaction. For coupons processed with a high bromide-containing flux, bromide containing CAF was created and characterized using transmission electron microscopy (TEM) to be Cu2(OH)3Br. In addition, a copper-containing compound was formed in the polymer matrix and characterized using XPS as CuBr. An electrochemical mechanism for the formation of bromide-containing CAF has been proposed based on the XPS data. .
3

A Surrogate Measure Of Customer Satisfaction In The Manufacture Of Printed Wiring Boards

Maamoun, Adam Y. 01 January 2008 (has links)
The objective of this research is to determine and develop a model that is capable of accurately measuring customer satisfaction for different industries and in particularly for the Printed Wiring Boards (PWB) Manufacturers. The new model will incorporate data not being collected or utilized by the survey method of determining customer satisfaction. The method used is a weighted average of satisfaction among several researched categories with percentages that accurately represent the relative importance of multiple facets of the PWB manufacturers customer satisfaction. A very common term in quality assurance is that "What is not measured accurately can not be evaluated or managed correctly," thus customer satisfaction is a very important aspect of any business, industry, or government. A satisfied customer will do more business and recommend it to other potential customers. Thus the business will grow and more revenues result. On the other hand, an unsatisfied customer will abandon the business and encourage more customers not to get involved with the same business so the business may decline and lose its market share and profitability. The categories that contribute to PWB customer satisfaction will be determined by conducting surveys among the leaders and best in the business of the PWB industry in addition to discovery of related articles that define the categories of the customer satisfaction for the PWB manufacturers. Once the categories are determined, the research concentrates on the weighting of the categories that most contribute to the PWB customer's satisfaction and a measure of satisfaction is derived. The model is easily applied to any other kind of PWB business or service industry. The model is based on empirical methods that will give an accurate measurement for the PWB customer's satisfaction. This in turn allows organizations the opportunity for improving customer satisfaction and increasing market share. The algorithm is based on characteristics deemed important by customers. Thus the customer satisfaction index can be computed and monitored on a regular basis without costly surveys. The major difference between this new model and the standard methods of determining customer satisfaction using the surveys is that this model will utilize data available with the proposals, sales, shipping, receiving, quality, engineering, manufacturing, and purchasing departments. The developed method to measure customer satisfaction utilizing internal data can be more cost effective, more accurate, can provide individual customer satisfaction scores, can measure whether or not these individual scores are statistically lower than the majority, and can provide satisfaction measures in real time none of which can be supplied by the survey method.
4

Studies In Micro Interconnections In Printed Wiring Board

Bhat, Shriram N 01 1900 (has links)
Trend towards downsizing the product size and at the same time to bring more functionality in electronic products, demands electrically interconnecting several miniaturized electronic components with high counts of I\Os (Input/Out put) on smaller and smaller size printed wiring boards [PWB]. These miniature components occupy lower foot print area but require higher routing interconnection densities. However, the conventional multilayer board technologies exhibit limitations when there is need to connect very high I\O components such as ball grid arrays, which require blind and buried interconnections within the multilayer mono-block. This limitation has given raise to newer methods of multi layer construction. Build–up multilayer PWB is now the technology of choice for enhanced routing capability including blind and buried interlayer connections. Build up methods are based on making very small vias within dielectric layers followed by metalisation. Typically blind and buried vias are very small, and hence called “micro vias” connecting the layers selectively within the multilayer mono-block. Buried vias make the interconnection between the consecutive layers, and blind vias connect the surface layers to any one of the interior layers in the build up multilayer board. If the blind vias are filled with a dielectric, the entire top and bottom surface area becomes available for high -density component mounting. The crux in build up board technologies is the method of creating micro-holes; a micro hole is a hole, which is less than 150 micro meter in diameter. Efforts are made to replace existing metalising techniques with “paste filling” methodologies, which would result in “SOLID CONDUCTING VIAS” CALLED AS “MICRO -INTERCONNECTS” The work reported in this thesis aims at demonstrating one such innovative ‘solid conducting via’ formation without using any of the known micro-hole formation techniques. Based on the results obtained some useful conclusions have been drawn which will perhaps go a long way in the name of “PRINTED PILLAR TECHNOLOGY” a novel methodology for building multilayer suitable for very high I\O components such as “ball grid arrays.”

Page generated in 0.1121 seconds