Spelling suggestions: "subject:"probabilidade dde transição"" "subject:"probabilidade dee transição""
1 |
Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados / Markov transition models: a focus on planned experiments with correlated binary dataLordelo, Mauricio Santana 30 May 2014 (has links)
Os modelos de transição de Markov constituem uma ferramenta de grande importância para diversas áreas do conhecimento quando são desenvolvidos estudos com medidas repetidas. Eles caracterizam-se por modelar a variável resposta ao longo do tempo condicionada a uma ou mais respostas anteriores, conhecidas como a história do processo. Além disso, é possível a inclusão de outras covariáveis. No caso das respostas binárias, pode-se construir uma matriz com as probabilidades de transição de um estado para outro. Neste trabalho, quatro abordagens diferentes de modelos de transição foram comparadas para avaliar qual estima melhor o efeito causal de tratamentos em um estudo experimental em que a variável resposta é um vetor binário medido ao longo do tempo. Estudos de simulação foram realizados levando em consideração experimentos balanceados com três tratamentos de natureza categórica. Para avaliar as estimativas foram utilizados o erro padrão, viés e percentual de cobertura dos intervalos de confiança. Os resultados mostraram que os modelos de transição marginalizados são mais indicados na situação em que um experimento é desenvolvido com um reduzido número de medidas repetidas. Como complementação, apresenta-se uma forma alternativa de realizar comparações múltiplas, uma vez que os pressupostos como normalidade, independência e homocedasticidade são violados impossibilitando o uso dos métodos tradicionais. Um experimento com dados reais no qual se registrou a presença de fungos (considerada como sucesso) em cultivos de citros e morango foi analisado por meio do modelo de transição apropriado. Para as comparações múltiplas, intervalos de confiança simultâneos foram construídos para o preditor linear e os resultados foram estendidos para a resposta média que neste caso são as probabilidades de sucesso. / The transition Markov models are a very important tool for several areas of knowledge when studies are developed with repeated measures. They are characterized by modeling the response variable over time conditional to the previous response which is known as the history. In addtion it is possible to include other covariates. In the case of binary responses, can be constructed a matrix of transition probabilities from one state to another. In this work, four different approaches to transition models were compared in order to assess which best estimates of the causal effect of treatments in an experimental studies where the outcome is a vector of binary response measured over time. Simulation study was held taking into account a balanced experiments with three treatments of categorical nature. To assess the best estimates standard error and bias, beyond the percentage of coverage were used. The results showed that the marginalized transition models are more appropriate in situation where an experiment is developed with a reduced number of repeated measurements. As complementation is presented an alternative way to perform multiple comparisons, since the assumptions as normality, independence and homoscedasticity are violated precluding the use of traditional methods. An experiment with real data where we recorded the presence of fungi (deemed successful) in citrus and strawberry crops was analyzed through the appropriate transition model. For multiple comparisons, simultaneous confidence intervals were constructed for the linear predictor and the results have been extended to the mean response in this case are the probabilities of success.
|
2 |
Modelos de transição de Markov: um enfoque em experimentos planejados com dados binários correlacionados / Markov transition models: a focus on planned experiments with correlated binary dataMauricio Santana Lordelo 30 May 2014 (has links)
Os modelos de transição de Markov constituem uma ferramenta de grande importância para diversas áreas do conhecimento quando são desenvolvidos estudos com medidas repetidas. Eles caracterizam-se por modelar a variável resposta ao longo do tempo condicionada a uma ou mais respostas anteriores, conhecidas como a história do processo. Além disso, é possível a inclusão de outras covariáveis. No caso das respostas binárias, pode-se construir uma matriz com as probabilidades de transição de um estado para outro. Neste trabalho, quatro abordagens diferentes de modelos de transição foram comparadas para avaliar qual estima melhor o efeito causal de tratamentos em um estudo experimental em que a variável resposta é um vetor binário medido ao longo do tempo. Estudos de simulação foram realizados levando em consideração experimentos balanceados com três tratamentos de natureza categórica. Para avaliar as estimativas foram utilizados o erro padrão, viés e percentual de cobertura dos intervalos de confiança. Os resultados mostraram que os modelos de transição marginalizados são mais indicados na situação em que um experimento é desenvolvido com um reduzido número de medidas repetidas. Como complementação, apresenta-se uma forma alternativa de realizar comparações múltiplas, uma vez que os pressupostos como normalidade, independência e homocedasticidade são violados impossibilitando o uso dos métodos tradicionais. Um experimento com dados reais no qual se registrou a presença de fungos (considerada como sucesso) em cultivos de citros e morango foi analisado por meio do modelo de transição apropriado. Para as comparações múltiplas, intervalos de confiança simultâneos foram construídos para o preditor linear e os resultados foram estendidos para a resposta média que neste caso são as probabilidades de sucesso. / The transition Markov models are a very important tool for several areas of knowledge when studies are developed with repeated measures. They are characterized by modeling the response variable over time conditional to the previous response which is known as the history. In addtion it is possible to include other covariates. In the case of binary responses, can be constructed a matrix of transition probabilities from one state to another. In this work, four different approaches to transition models were compared in order to assess which best estimates of the causal effect of treatments in an experimental studies where the outcome is a vector of binary response measured over time. Simulation study was held taking into account a balanced experiments with three treatments of categorical nature. To assess the best estimates standard error and bias, beyond the percentage of coverage were used. The results showed that the marginalized transition models are more appropriate in situation where an experiment is developed with a reduced number of repeated measurements. As complementation is presented an alternative way to perform multiple comparisons, since the assumptions as normality, independence and homoscedasticity are violated precluding the use of traditional methods. An experiment with real data where we recorded the presence of fungi (deemed successful) in citrus and strawberry crops was analyzed through the appropriate transition model. For multiple comparisons, simultaneous confidence intervals were constructed for the linear predictor and the results have been extended to the mean response in this case are the probabilities of success.
|
3 |
Caracterização dos estados eletrônicos das moléculas BeAl, MgAl e CaAl.Vladir Wagner Ribas 15 August 2008 (has links)
Este trabalho teve como principal objetivo determinar e analisar a estrutura eletrônica e os principais aspectos que envolvem a ligação química do estado fundamental e de vários estados excitados de moléculas diatômicas, utilizando métodos da química quântica molecular. Nossos estudos foram concentrados nas espécies moleculares BeAl, MgAl e CaAl. Para todas as moléculas, os cálculos foram realizados usando a mesma metodologia, ou seja, utilizou-se o método CASSCF/MRCI e o conjunto base cc-pVQZ. Em uma primeira etapa, buscou-se incluir os efeitos da correlação estática usando funções de onda CASSCF. Na etapa seguinte, os efeitos da correlação dinâmica foram incorporados pelo método MRCI, que utiliza as funções de onda CASSCF como referência para gerar configurações por excitações simples e duplas na construção de sua função de onda. Os orbitais do caroço foram mantidos congelados em todos os cálculos. Dessa forma, foi realizada uma caracterização teórica rigorosa das curvas de energia potencial, constantes espectroscópicas, níveis vibracionais, funções momentos de dipolo, funções momentos de transição, probabilidades de transição e tempos de vida radiativa.
|
4 |
Reguladores robustos recursivos para sistemas lineares sujeitos a saltos Markovianos com matrizes de transição incertas / Recursive robust regulators for Markovian jump linear systems with uncertain transition matricesBortolin, Daiane Cristina 05 May 2017 (has links)
Esta tese aborda o problema de regulação para sistemas lineares sujeitos a saltos Markovianos de tempo discreto com matrizes de transição incertas. Considera-se que as incertezas são limitadas em norma e os estados da cadeia de Markov podem não ser completamente observados pelo controlador. No cenário com observação completa dos estados, a solução é deduzida com base em um funcional quadrático dado em termos das probabilidades de transição incertas. Enquanto que no cenário sem observação, a solução é obtida por meio da reformulação do sistema Markoviano como um sistema determinístico, independente da cadeia de Markov. Três modelos são propostos para essa reformulação: um modelo é baseado no primeiro momento do sistema Markoviano, o segundo é obtido a partir da medida de Dirac e resulta em um sistema aumentado, e o terceiro fornece um sistema aumentado singular. Os reguladores recursivos robustos são projetados a partir de critérios de custo quadrático, dados em termos de problemas de otimização restritos. A solução é derivada da técnica de mínimos quadrados regularizados robustos e apresentada em uma estrutura matricial. A recursividade é estabelecida por equações de Riccati, que se assemelham às soluções dos reguladores clássicos, para essa classe de sistemas, quando não estão sujeitos a incertezas. / This thesis deals with regulation problem for discrete-time Markovian jump linear systems with uncertain transition matrix. The uncertainties are assumed to be normbounded type. The states of the Markov chain can not be completely observed by the controller. In the scenario with complete observation of the states, the solution is deduced based on a quadratic functional given in terms of uncertain transition probabilities. While in the scenario without observation, the solution is obtained from reformulation of the Markovian system as a deterministic system, independent of the Markov chain. Three models are proposed for the reformulation process: a model is based on the first moment of the Markovian system, the second is obtained from Dirac measure which results in an augmented system, and the third provides a singular augmented system. Recursive robust regulators are designed from quadratic cost criteria given in terms of constrained optimization problems. The solution is derived from the robust regularized least-square approach, whose framework is given in terms of a matrix structure. The recursiveness is established by Riccati equations which resemble the solutions of standard regulators for this class of systems, when they are not subject to uncertainties.
|
5 |
Reguladores robustos recursivos para sistemas lineares sujeitos a saltos Markovianos com matrizes de transição incertas / Recursive robust regulators for Markovian jump linear systems with uncertain transition matricesDaiane Cristina Bortolin 05 May 2017 (has links)
Esta tese aborda o problema de regulação para sistemas lineares sujeitos a saltos Markovianos de tempo discreto com matrizes de transição incertas. Considera-se que as incertezas são limitadas em norma e os estados da cadeia de Markov podem não ser completamente observados pelo controlador. No cenário com observação completa dos estados, a solução é deduzida com base em um funcional quadrático dado em termos das probabilidades de transição incertas. Enquanto que no cenário sem observação, a solução é obtida por meio da reformulação do sistema Markoviano como um sistema determinístico, independente da cadeia de Markov. Três modelos são propostos para essa reformulação: um modelo é baseado no primeiro momento do sistema Markoviano, o segundo é obtido a partir da medida de Dirac e resulta em um sistema aumentado, e o terceiro fornece um sistema aumentado singular. Os reguladores recursivos robustos são projetados a partir de critérios de custo quadrático, dados em termos de problemas de otimização restritos. A solução é derivada da técnica de mínimos quadrados regularizados robustos e apresentada em uma estrutura matricial. A recursividade é estabelecida por equações de Riccati, que se assemelham às soluções dos reguladores clássicos, para essa classe de sistemas, quando não estão sujeitos a incertezas. / This thesis deals with regulation problem for discrete-time Markovian jump linear systems with uncertain transition matrix. The uncertainties are assumed to be normbounded type. The states of the Markov chain can not be completely observed by the controller. In the scenario with complete observation of the states, the solution is deduced based on a quadratic functional given in terms of uncertain transition probabilities. While in the scenario without observation, the solution is obtained from reformulation of the Markovian system as a deterministic system, independent of the Markov chain. Three models are proposed for the reformulation process: a model is based on the first moment of the Markovian system, the second is obtained from Dirac measure which results in an augmented system, and the third provides a singular augmented system. Recursive robust regulators are designed from quadratic cost criteria given in terms of constrained optimization problems. The solution is derived from the robust regularized least-square approach, whose framework is given in terms of a matrix structure. The recursiveness is established by Riccati equations which resemble the solutions of standard regulators for this class of systems, when they are not subject to uncertainties.
|
Page generated in 0.5648 seconds