• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 1
  • Tagged with
  • 29
  • 29
  • 22
  • 20
  • 14
  • 14
  • 14
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Programação dinâmica em tempo real para processos de decisão markovianos com probabilidades imprecisas / Real-time dynamic programming for Markov Decision Processes with Imprecise Probabilities

Dias, Daniel Baptista 28 November 2014 (has links)
Em problemas de tomada de decisão sequencial modelados como Processos de Decisão Markovianos (MDP) pode não ser possível obter uma medida exata para as probabilidades de transição de estados. Visando resolver esta situação os Processos de Decisão Markovianos com Probabilidades Imprecisas (Markov Decision Processes with Imprecise Transition Probabilities, MDP-IPs) foram introduzidos. Porém, enquanto estes MDP-IPs se mostram como um arcabouço robusto para aplicações de planejamento no mundo real, suas soluções consomem muito tempo na prática. Em trabalhos anteriores, buscando melhorar estas soluções foram propostos algoritmos de programação dinâmica síncrona eficientes para resolver MDP-IPs com uma representação fatorada para as funções de transição probabilística e recompensa, chamados de MDP-IP fatorados. Entretanto quando o estado inicial de um problema do Caminho mais Curto Estocástico (Stochastic Shortest Path MDP, SSP MDP) é dado, estas soluções não utilizam esta informação. Neste trabalho será introduzido o problema do Caminho mais Curto Estocástico com Probabilidades Imprecisas (Stochastic Shortest Path MDP-IP, SSP MDP-IP) tanto em sua forma enumerativa, quanto na fatorada. Um algoritmo de programação dinâmica assíncrona para SSP MDP-IP enumerativos com probabilidades dadas por intervalos foi proposto por Buffet e Aberdeen (2005). Entretanto, em geral um problema é dado de forma fatorada, i.e., em termos de variáveis de estado e nesse caso, mesmo se for assumida a imprecisão dada por intervalos sobre as variáveis, ele não poderá ser mais aplicado, pois as probabilidades de transição conjuntas serão multilineares. Assim, será mostrado que os SSP MDP-IPs fatorados são mais expressivos que os enumerativos e que a mudança do SSP MDP-IP enumerativo para o caso geral de um SSP MDP-IPs fatorado leva a uma mudança de resolução da função objetivo do Bellman backup de uma função linear para uma não-linear. Também serão propostos algoritmos enumerativos, chamados de RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e fatorados chamados factRTDP-IP (factored RTDP-IP) e factLRTDP-IP (factored LRTDP-IP). Eles serão avaliados em relação aos algoritmos de programação dinâmica síncrona em termos de tempo de convergência da solução e de escalabilidade. / In sequential decision making problems modelled as Markov Decision Processes (MDP) we may not have the state transition probabilities. To solve this issue, the framework based in Markov Decision Processes with Imprecise Transition Probabilities (MDP-IPs) is introduced. Therefore, while MDP-IPs is a robust framework to use in real world planning problems, its solutions are time-consuming in practice. In previous works, efficient algorithms based in synchronous dynamic programming to solve MDP-IPs with factored representations of the probabilistic transition function and reward function, called factored MDP-IPs. However, given a initial state of a system, modeled as a Stochastic Shortest Path MDP (SSP MDP), solutions does not use this information. In this work we introduce the Stochastic Shortest Path MDP-IPs (SSP MDP-IPs) in enumerative form and in factored form. An efficient asynchronous dynamic programming solution for SSP MDP-IPs with enumerated states has been proposed by Buffet e Aberdeen (2005) before which is restricted to interval-based imprecision. Nevertheless, in general the problem is given in a factored form, i.e., in terms of state variables and in this case even if we assume interval-based imprecision over the variables, the previous solution is no longer applicable since we have multilinear parameterized joint transition probabilities. In this work we show that the innocuous change from the enumerated SSP MDP-IP cases to the general case of factored SSP MDP-IPs leads to a switch from a linear to nonlinear objectives in the Bellman backup. Also we propose assynchronous dynamic programming enumerative algorithms, called RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) and LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities), and factored algorithms called factRTDP-IP (factored RTDP-IP) and factLRTDP-IP (factored LRTDP-IP). There algorithms will be evaluated with the synchronous dynamic programming algorithms previously proposed in terms of convergence time and scalability.
12

Processos de decisão Markovianos fatorados com probabilidades imprecisas / Factored Markov decision processes with Imprecise Transition Probabilities

Delgado, Karina Valdivia 19 January 2010 (has links)
Em geral, quando modelamos problemas de planejamento probabilístico do mundo real, usando o arcabouço de Processos de Decisão Markovianos (MDPs), é difícil obter uma estimativa exata das probabilidades de transição. A incerteza surge naturalmente na especificação de um domínio, por exemplo, durante a aquisição das probabilidades de transição a partir de um especialista ou de dados observados através de técnicas de amostragem, ou ainda de distribuições de transição não estacionárias decorrentes do conhecimento insuficiente do domínio. Com o objetivo de se determinar uma política robusta, dada a incerteza nas transições de estado, Processos de Decisão Markovianos com Probabilidades Imprecisas (MDP-IPs) têm sido usados para modelar esses cenários. Infelizmente, apesar de existirem diversos algoritmos de solução para MDP-IPs, muitas vezes eles exigem chamadas externas de rotinas de otimização que podem ser extremamente custosas. Para resolver esta deficiência, nesta tese, introduzimos o MDP-IP fatorado e propomos métodos eficientes de programação matemática e programação dinâmica que permitem explorar a estrutura de um domínio de aplicação. O método baseado em programação matemática propõe soluções aproximadas eficientes para MDP-IPs fatorados, estendendo abordagens anteriores de programação linear para MDPs fatorados. Essa proposta, baseada numa formulação multilinear para aproximações robustas da função valor de estados, explora a representação fatorada de um MDP-IP, reduzindo em ordens de magnitude o tempo consumido em relação às abordagens não-fatoradas previamente propostas. O segundo método proposto, baseado em programação dinâmica, resolve o gargalo computacional existente nas soluções de programação dinâmica para MDP-IPs propostas na literatura: a necessidade de resolver múltiplos problemas de otimização não-linear. Assim, mostramos como representar a função valor de maneira compacta usando uma nova estrutura de dados chamada de Diagramas de Decisão Algébrica Parametrizados, e como aplicar técnicas de aproximação para reduzir drasticamente a sobrecarga computacional das chamadas a um otimizador não-linear, produzindo soluções ótimas aproximadas com erro limitado. Nossos resultados mostram uma melhoria de tempo e até duas ordens de magnitude em comparação às abordagens tradicionais enumerativas baseadas em programação dinâmica e uma melhoria de tempo de até uma ordem de magnitude sobre a extensão de técnicas de iteração de valor aproximadas para MDPs fatorados. Além disso, produzimos o menor erro de todos os algoritmos de aproximação avaliados. / When modeling real-world decision-theoretic planning problems with the framework of Markov Decision Processes(MDPs), it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, uncertainty arises in the specification of transitions due to elicitation of MDP transition models from an expert or data, or non-stationary transition distributions arising from insuficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, Markov Decision Processes with Imprecise Transition Probabilities (MDP-IPs) have been introduced. Unfortunately, while various solutions exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose eficient mathematical programming and dynamic programming methods to exploit its structure. First, we derive eficient approximate solutions for Factored MDP-IPs based on mathematical programming resulting in a multilinear formulation for robust maximin linear-value approximations in Factored MDP-IPs. By exploiting factored structure in MDP-IPs we are able to demonstrate orders of magnitude reduction in solution time over standard exact non-factored approaches. Second, noting that the key computational bottleneck in the dynamic programming solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional at dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error among all approximation algorithm evaluated.
13

Soluções eficientes para processos de decisão markovianos baseadas em alcançabilidade e bissimulações estocásticas / Efficient solutions to Markov decision processes based on reachability and stochastic bisimulations

Santos, Felipe Martins dos 09 December 2013 (has links)
Planejamento em inteligência artificial é a tarefa de determinar ações que satisfaçam um dado objetivo. Nos problemas de planejamento sob incerteza, as ações podem ter efeitos probabilísticos. Esses problemas são modelados como Processos de Decisão Markovianos (Markov Decision Processes - MDPs), modelos que permitem o cálculo de soluções ótimas considerando o valor esperado de cada ação em cada estado. Contudo, resolver problemas grandes de planejamento probabilístico, i.e., com um grande número de estados e ações, é um enorme desafio. MDPs grandes podem ser reduzidos através da computação de bissimulações estocásticas, i.e., relações de equivalência sobre o conjunto de estados do MDP original. A partir das bissimulações estocásticas, que podem ser exatas ou aproximadas, é possível obter um modelo abstrato reduzido que pode ser mais fácil de resolver do que o MDP original. No entanto, para problemas de alguns domínios, a computação da bissimulação estocástica sobre todo o espaço de estados é inviável. Os algoritmos propostos neste trabalho estendem os algoritmos usados para a computação de bissimulações estocásticas para MDPs de forma que elas sejam computadas sobre o conjunto de estados alcançáveis a partir de um dado estado inicial, que pode ser muito menor do que o conjunto de estados completo. Os resultados experimentais mostram que é possível resolver problemas grandes de planejamento probabilístico com desempenho superior às técnicas conhecidas de bissimulação estocástica. / Planning in artificial intelligence is the task of finding actions to reach a given goal. In planning under uncertainty, the actions can have probabilistic effects. This problems are modeled using Markov Decision Processes (MDPs), models that enable the computation of optimal solutions considering the expected value of each action when applied in each state. However, to solve big probabilistic planning problems, i.e., those with a large number of states and actions, is still a challenge. Large MDPs can be reduced by computing stochastic bisimulations, i.e., equivalence relations over the original MDP states. From the stochastic bisimulations, that can be exact or approximated, it is possible to get an abstract reduced model that can be easier to solve than the original MDP. But, for some problems, the stochastic bisimulation computation over the whole state space is unfeasible. The algorithms proposed in this work extend the algorithms that are used to compute stochastic bisimulations for MDPs in a way that they can be computed over the reachable set of states with a given initial state, which can be much smaller than the complete set of states. The empirical results show that it is possible to solve large probabilistic planning problems with better performance than the known techniques of stochastic bisimulation.
14

Probabilistic Transmission Expansion Planning in a Competitive Electricity Market

Miao Lu Unknown Date (has links)
Changes in the electric power industry have brought great challenges and uncertainties in transmission planning area. More effective planning of transmission grids with the appropriate development of advanced planning technologies is badly-needed. The aim of this research is to develop an advanced probabilistic transmission expansion planning (TEP) methodology in a continually changing market environment. The methodology should be able to strengthen and increase the robustness of existing transmission network. By using the proposed probabilistic TEP methodology, it can reduce the risks of major outages and identify weak buses in the system. The significance of this research is shown by its comprehensiveness and powerful practicability. Results from this research are able to improve the planning efficiency and reliability with consideration of financial risks in an electricity market. In order to achieve the target, this research methodologies focused on two main important issues, (1) probability based technical assessment and (2) financial investment evaluation. During the first stage study, probabilistic congestion management, probabilistic reliability evaluation and probabilistic load flow for TEP under uncertainties have been investigated and improved. The developed methodologies and indices, which truly represent the composite impact from both critical state and probability, have linked with financial terms. At financial investment evaluation part, Monte Carlo market simulation is performed to assist economic analysis. The overall planning process has been treated as a constrained multi-objective optimisation task. Comprehensive investigations are conducted on several test systems and testified by real power systems using the available reliability data and economic information from the Australian National Electricity Market (NEM). Overall, this research developed probabilistic transmission planning methodologies that can reflect modern market structures more accurately and it enable a greater utilization of current generation and transmission resources to increase potential operation efficiencies.
15

Soluções eficientes para processos de decisão markovianos baseadas em alcançabilidade e bissimulações estocásticas / Efficient solutions to Markov decision processes based on reachability and stochastic bisimulations

Felipe Martins dos Santos 09 December 2013 (has links)
Planejamento em inteligência artificial é a tarefa de determinar ações que satisfaçam um dado objetivo. Nos problemas de planejamento sob incerteza, as ações podem ter efeitos probabilísticos. Esses problemas são modelados como Processos de Decisão Markovianos (Markov Decision Processes - MDPs), modelos que permitem o cálculo de soluções ótimas considerando o valor esperado de cada ação em cada estado. Contudo, resolver problemas grandes de planejamento probabilístico, i.e., com um grande número de estados e ações, é um enorme desafio. MDPs grandes podem ser reduzidos através da computação de bissimulações estocásticas, i.e., relações de equivalência sobre o conjunto de estados do MDP original. A partir das bissimulações estocásticas, que podem ser exatas ou aproximadas, é possível obter um modelo abstrato reduzido que pode ser mais fácil de resolver do que o MDP original. No entanto, para problemas de alguns domínios, a computação da bissimulação estocástica sobre todo o espaço de estados é inviável. Os algoritmos propostos neste trabalho estendem os algoritmos usados para a computação de bissimulações estocásticas para MDPs de forma que elas sejam computadas sobre o conjunto de estados alcançáveis a partir de um dado estado inicial, que pode ser muito menor do que o conjunto de estados completo. Os resultados experimentais mostram que é possível resolver problemas grandes de planejamento probabilístico com desempenho superior às técnicas conhecidas de bissimulação estocástica. / Planning in artificial intelligence is the task of finding actions to reach a given goal. In planning under uncertainty, the actions can have probabilistic effects. This problems are modeled using Markov Decision Processes (MDPs), models that enable the computation of optimal solutions considering the expected value of each action when applied in each state. However, to solve big probabilistic planning problems, i.e., those with a large number of states and actions, is still a challenge. Large MDPs can be reduced by computing stochastic bisimulations, i.e., equivalence relations over the original MDP states. From the stochastic bisimulations, that can be exact or approximated, it is possible to get an abstract reduced model that can be easier to solve than the original MDP. But, for some problems, the stochastic bisimulation computation over the whole state space is unfeasible. The algorithms proposed in this work extend the algorithms that are used to compute stochastic bisimulations for MDPs in a way that they can be computed over the reachable set of states with a given initial state, which can be much smaller than the complete set of states. The empirical results show that it is possible to solve large probabilistic planning problems with better performance than the known techniques of stochastic bisimulation.
16

Programação dinâmica em tempo real para processos de decisão markovianos com probabilidades imprecisas / Real-time dynamic programming for Markov Decision Processes with Imprecise Probabilities

Daniel Baptista Dias 28 November 2014 (has links)
Em problemas de tomada de decisão sequencial modelados como Processos de Decisão Markovianos (MDP) pode não ser possível obter uma medida exata para as probabilidades de transição de estados. Visando resolver esta situação os Processos de Decisão Markovianos com Probabilidades Imprecisas (Markov Decision Processes with Imprecise Transition Probabilities, MDP-IPs) foram introduzidos. Porém, enquanto estes MDP-IPs se mostram como um arcabouço robusto para aplicações de planejamento no mundo real, suas soluções consomem muito tempo na prática. Em trabalhos anteriores, buscando melhorar estas soluções foram propostos algoritmos de programação dinâmica síncrona eficientes para resolver MDP-IPs com uma representação fatorada para as funções de transição probabilística e recompensa, chamados de MDP-IP fatorados. Entretanto quando o estado inicial de um problema do Caminho mais Curto Estocástico (Stochastic Shortest Path MDP, SSP MDP) é dado, estas soluções não utilizam esta informação. Neste trabalho será introduzido o problema do Caminho mais Curto Estocástico com Probabilidades Imprecisas (Stochastic Shortest Path MDP-IP, SSP MDP-IP) tanto em sua forma enumerativa, quanto na fatorada. Um algoritmo de programação dinâmica assíncrona para SSP MDP-IP enumerativos com probabilidades dadas por intervalos foi proposto por Buffet e Aberdeen (2005). Entretanto, em geral um problema é dado de forma fatorada, i.e., em termos de variáveis de estado e nesse caso, mesmo se for assumida a imprecisão dada por intervalos sobre as variáveis, ele não poderá ser mais aplicado, pois as probabilidades de transição conjuntas serão multilineares. Assim, será mostrado que os SSP MDP-IPs fatorados são mais expressivos que os enumerativos e que a mudança do SSP MDP-IP enumerativo para o caso geral de um SSP MDP-IPs fatorado leva a uma mudança de resolução da função objetivo do Bellman backup de uma função linear para uma não-linear. Também serão propostos algoritmos enumerativos, chamados de RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e fatorados chamados factRTDP-IP (factored RTDP-IP) e factLRTDP-IP (factored LRTDP-IP). Eles serão avaliados em relação aos algoritmos de programação dinâmica síncrona em termos de tempo de convergência da solução e de escalabilidade. / In sequential decision making problems modelled as Markov Decision Processes (MDP) we may not have the state transition probabilities. To solve this issue, the framework based in Markov Decision Processes with Imprecise Transition Probabilities (MDP-IPs) is introduced. Therefore, while MDP-IPs is a robust framework to use in real world planning problems, its solutions are time-consuming in practice. In previous works, efficient algorithms based in synchronous dynamic programming to solve MDP-IPs with factored representations of the probabilistic transition function and reward function, called factored MDP-IPs. However, given a initial state of a system, modeled as a Stochastic Shortest Path MDP (SSP MDP), solutions does not use this information. In this work we introduce the Stochastic Shortest Path MDP-IPs (SSP MDP-IPs) in enumerative form and in factored form. An efficient asynchronous dynamic programming solution for SSP MDP-IPs with enumerated states has been proposed by Buffet e Aberdeen (2005) before which is restricted to interval-based imprecision. Nevertheless, in general the problem is given in a factored form, i.e., in terms of state variables and in this case even if we assume interval-based imprecision over the variables, the previous solution is no longer applicable since we have multilinear parameterized joint transition probabilities. In this work we show that the innocuous change from the enumerated SSP MDP-IP cases to the general case of factored SSP MDP-IPs leads to a switch from a linear to nonlinear objectives in the Bellman backup. Also we propose assynchronous dynamic programming enumerative algorithms, called RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) and LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities), and factored algorithms called factRTDP-IP (factored RTDP-IP) and factLRTDP-IP (factored LRTDP-IP). There algorithms will be evaluated with the synchronous dynamic programming algorithms previously proposed in terms of convergence time and scalability.
17

Processos de decisão Markovianos fatorados com probabilidades imprecisas / Factored Markov decision processes with Imprecise Transition Probabilities

Karina Valdivia Delgado 19 January 2010 (has links)
Em geral, quando modelamos problemas de planejamento probabilístico do mundo real, usando o arcabouço de Processos de Decisão Markovianos (MDPs), é difícil obter uma estimativa exata das probabilidades de transição. A incerteza surge naturalmente na especificação de um domínio, por exemplo, durante a aquisição das probabilidades de transição a partir de um especialista ou de dados observados através de técnicas de amostragem, ou ainda de distribuições de transição não estacionárias decorrentes do conhecimento insuficiente do domínio. Com o objetivo de se determinar uma política robusta, dada a incerteza nas transições de estado, Processos de Decisão Markovianos com Probabilidades Imprecisas (MDP-IPs) têm sido usados para modelar esses cenários. Infelizmente, apesar de existirem diversos algoritmos de solução para MDP-IPs, muitas vezes eles exigem chamadas externas de rotinas de otimização que podem ser extremamente custosas. Para resolver esta deficiência, nesta tese, introduzimos o MDP-IP fatorado e propomos métodos eficientes de programação matemática e programação dinâmica que permitem explorar a estrutura de um domínio de aplicação. O método baseado em programação matemática propõe soluções aproximadas eficientes para MDP-IPs fatorados, estendendo abordagens anteriores de programação linear para MDPs fatorados. Essa proposta, baseada numa formulação multilinear para aproximações robustas da função valor de estados, explora a representação fatorada de um MDP-IP, reduzindo em ordens de magnitude o tempo consumido em relação às abordagens não-fatoradas previamente propostas. O segundo método proposto, baseado em programação dinâmica, resolve o gargalo computacional existente nas soluções de programação dinâmica para MDP-IPs propostas na literatura: a necessidade de resolver múltiplos problemas de otimização não-linear. Assim, mostramos como representar a função valor de maneira compacta usando uma nova estrutura de dados chamada de Diagramas de Decisão Algébrica Parametrizados, e como aplicar técnicas de aproximação para reduzir drasticamente a sobrecarga computacional das chamadas a um otimizador não-linear, produzindo soluções ótimas aproximadas com erro limitado. Nossos resultados mostram uma melhoria de tempo e até duas ordens de magnitude em comparação às abordagens tradicionais enumerativas baseadas em programação dinâmica e uma melhoria de tempo de até uma ordem de magnitude sobre a extensão de técnicas de iteração de valor aproximadas para MDPs fatorados. Além disso, produzimos o menor erro de todos os algoritmos de aproximação avaliados. / When modeling real-world decision-theoretic planning problems with the framework of Markov Decision Processes(MDPs), it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, uncertainty arises in the specification of transitions due to elicitation of MDP transition models from an expert or data, or non-stationary transition distributions arising from insuficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, Markov Decision Processes with Imprecise Transition Probabilities (MDP-IPs) have been introduced. Unfortunately, while various solutions exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose eficient mathematical programming and dynamic programming methods to exploit its structure. First, we derive eficient approximate solutions for Factored MDP-IPs based on mathematical programming resulting in a multilinear formulation for robust maximin linear-value approximations in Factored MDP-IPs. By exploiting factored structure in MDP-IPs we are able to demonstrate orders of magnitude reduction in solution time over standard exact non-factored approaches. Second, noting that the key computational bottleneck in the dynamic programming solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional at dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error among all approximation algorithm evaluated.
18

Human-help in automated planning under uncertainty / Ajuda humana em planejamento automatizado sob incerteza

Franch, Ignasi Andrés 21 September 2018 (has links)
Planning is the sub-area of artificial intelligence that studies the process of selecting actions to lead an agent, e.g. a robot or a softbot, to a goal state. In many realistic scenarios, any choice of actions can lead the robot into a dead-end state, that is, a state from which the goal cannot be reached. In such cases, the robot can, pro-actively, resort to human help in order to reach the goal, an approach called symbiotic autonomy. In this work, we propose two different approaches to tackle this problem: (I) contingent planning, where the initial state is partially observable, configuring a belief state, and the outcomes of the robot actions are non-deterministic; and (II) probabilistic planning, where the initial state may be partially or totally observable and the actions have probabilistic outcomes. In both approaches, the human help is considered a scarce resource that should be used only when necessary. In contingent planning, the problem is to find a policy (a function mapping belief states into actions) that: (i) guarantees the agent will always reach the goal (strong policy); (ii) guarantees that the agent will eventually reach the goal (strong cyclic policy), or (iii) does not guarantee achieving the goal (weak policy). In this scenario, we propose a contingent planning system that considers human help to transform weak policies into strong (cyclic) policies. To do so, two types of human help are included: (i) human actions that modify states and/or belief states; and (ii) human observations that modify belief states. In probabilistic planning, the problem is to find a policy (a function mapping between world states and actions) that can be one of these two types: a proper policy, where the agent has probability 1 of reaching the goal; or an improper policy, in the case of unavoidable dead-ends. In general, the goal of the agent is to find a policy that minimizes the expected accumulated cost of the actions while maximizes the probability of reaching the goal. In this scenario, this work proposes probabilistic planners that consider human help to transform improper policies into proper policies however, considering two new (alternative) criteria: either to minimize the probability of using human actions or to minimize the expected number of human actions. Furthermore, we show that optimal policies under these criteria can be efficiently computed either by increasing human action costs or given a penalty when a human help is used. Solutions proposed in both scenarios, contingent planning and probabilistic planning with human help, were evaluated over a collection of planning problems with dead-ends. The results show that: (i) all generated policies (strong (cyclic) or proper) include human help only when necessary; and (ii) we were able to find policies for contingent planning problems with up to 10^15000 belief states and for probabilistic planning problems with more than 3*10^18 physical states. / Planejamento é a subárea de Inteligência Artificial que estuda o processo de selecionar ações que levam um agente, por exemplo um robô, de um estado inicial a um estado meta. Em muitos cenários realistas, qualquer escolha de ações pode levar o robô para um estado que é um beco-sem-saída, isto é, um estado a partir do qual a meta não pode ser alcançada. Nestes casos, o robô pode, pró-ativamente, pedir ajuda humana para alcançar a meta, uma abordagem chamada autonomia simbiótica. Neste trabalho, propomos duas abordagens diferentes para tratar este problema: (I) planejamento contingente, em que o estado inicial é parcialmente observável, configurando um estado de crença, e existe não-determinismo nos resultados das ações; e (II) planejamento probabilístico, em que o estado inicial é totalmente observável e as ações tem efeitos probabilísticos. Em ambas abordagens a ajuda humana é considerada um recurso escasso e deve ser usada somente quando estritamente necessária. No planejamento contingente, o problema é encontrar uma política (mapeamento entre estados de crença e ações) com: (i) garantia de alcançar a meta (política forte); (ii) garantia de eventualmente alcançar a meta (política forte-cíclica), ou (iii) sem garantia de alcançar a meta (política fraca). Neste cenário, uma das contribuições deste trabalho é propor sistemas de planejamento contingente que considerem ajuda humana para transformar políticas fracas em políticas fortes (cíclicas). Para isso, incluímos ajuda humana de dois tipos: (i) ações que modificam estados do mundo e/ou estados de crença; e (ii) observações que modificam estados de crenças. Em planejamento probabilístico, o problema é encontrar uma política (mapeamento entre estados do mundo e ações) que pode ser de dois tipos: política própria, na qual o agente tem probabilidade 1 de alcançar a meta; ou política imprópria, caso exista um beco-sem-saída inevitável. O objetivo do agente é, em geral, encontrar uma política que minimize o custo esperado acumulado das ações enquanto maximize a probabilidade de alcançar a meta. Neste cenário, este trabalho propõe sistemas de planejamento probabilístico que considerem ajuda humana para transformar políticas impróprias em políticas próprias, porém considerando dois novos critérios: minimizar a probabilidade de usar ações do humano e minimizar o número esperado de ações do humano. Mostramos ainda que políticas ótimas sob esses novos critérios podem ser computadas de maneira eficiente considerando que ações humanas possuem um custo alto ou penalizando o agente ao pedir ajuda humana. Soluções propostas em ambos cenários, planejamento contingente e planejamento probabilístico com ajuda humana, foram empiricamente avaliadas sobre um conjunto de problemas de planejamento com becos-sem-saida. Os resultados mostram que: (i) todas as políticas geradas (fortes (cíclicas) ou próprias) incluem ajuda humana somente quando necessária; e (ii) foram encontradas políticas para problemas de planejamento contingente com até 10^15000 estados de crença e para problemas de planejamento probabilístico com até 3*10^18 estados do mundo.
19

Planejamento probabilístico sensível a risco com ILAO* e função utilidade exponencial / Probabilistic risk-sensitive planning with ILAO* and exponential utility function

Elthon Manhas de Freitas 18 October 2018 (has links)
Os processos de decisão de Markov (Markov Decision Process - MDP) têm sido usados para resolução de problemas de tomada de decisão sequencial. Existem problemas em que lidar com os riscos do ambiente para obter um resultado confiável é mais importante do que maximizar o retorno médio esperado. MDPs que lidam com esse tipo de problemas são chamados de processos de decisão de Markov sensíveis a risco (Risk-Sensitive Markov Decision Process - RSMDP). Dentre as diversas variações de RSMDP, estão os trabalhos baseados em utilidade exponencial que utilizam um fator de risco, o qual modela a atitude a risco do agente e que pode ser propensa ou aversa. Os algoritmos existentes na literatura para resolver esse tipo de RSMDPs são ineficientes se comparados a outros algoritmos de MDP. Neste projeto, é apresentada uma solução que pode ser usada em problemas maiores, tanto por executar cálculos apenas em estados relevantes para atingir um conjunto de estados meta partindo de um estado inicial, quanto por permitir processamento de números com expoentes muito elevados para os ambientes computacionais atuais. Os experimentos realizados evidenciam que (i) o algoritmo proposto é mais eficiente, se comparado aos algoritmos estado-da-arte para RSMDPs; e (ii) o uso da técnica LogSumExp permite resolver o problema de trabalhar com expoentes muito elevados em RSMDPs. / Markov Decision Process (MDP) has been used very efficiently to solve sequential decision-making problems. There are problems where dealing with environmental risks to get a reliable result is more important than maximizing the expected average return. MDPs that deal with this type of problem are called risk-sensitive Markov decision processes (RSMDP). Among the several variations of RSMDP are the works based on exponential utility that use a risk factor, which models the agent\'s risk attitude that can be prone or averse. The algorithms in the literature to solve this type of RSMDPs are inefficient when compared to other MDP algorithms. In this project, a solution is presented that can be used in larger problems, either by performing calculations only in relevant states to reach a set of meta states starting from an initial state, or by allowing the processing of numbers with very high exponents for the current computational environments. The experiments show that (i) the proposed algorithm is more efficient when compared to state-of-the-art algorithms for RSMDPs; and (ii) the LogSumExp technique solves the problem of working with very large exponents in RSMDPs
20

Aprendizado por reforço em lote: um estudo de caso para o problema de tomada de decisão em processos de venda / Batch reinforcement learning: a case study for the problem of decision making in sales processes

Lacerda, Dênis Antonio 12 December 2013 (has links)
Planejamento Probabilístico estuda os problemas de tomada de decisão sequencial de um agente, em que as ações possuem efeitos probabilísticos, modelados como um processo de decisão markoviano (Markov Decision Process - MDP). Dadas a função de transição de estados probabilística e os valores de recompensa das ações, é possível determinar uma política de ações (i.e., um mapeamento entre estado do ambiente e ações do agente) que maximiza a recompensa esperada acumulada (ou minimiza o custo esperado acumulado) pela execução de uma sequência de ações. Nos casos em que o modelo MDP não é completamente conhecido, a melhor política deve ser aprendida através da interação do agente com o ambiente real. Este processo é chamado de aprendizado por reforço. Porém, nas aplicações em que não é permitido realizar experiências no ambiente real, por exemplo, operações de venda, é possível realizar o aprendizado por reforço sobre uma amostra de experiências passadas, processo chamado de aprendizado por reforço em lote (Batch Reinforcement Learning). Neste trabalho, estudamos técnicas de aprendizado por reforço em lote usando um histórico de interações passadas, armazenadas em um banco de dados de processos, e propomos algumas formas de melhorar os algoritmos existentes. Como um estudo de caso, aplicamos esta técnica no aprendizado de políticas para o processo de venda de impressoras de grande formato, cujo objetivo é a construção de um sistema de recomendação de ações para vendedores iniciantes. / Probabilistic planning studies the problems of sequential decision-making of an agent, in which actions have probabilistic effects, and can be modeled as a Markov decision process (MDP). Given the probabilities and reward values of each action, it is possible to determine an action policy (in other words, a mapping between the state of the environment and the agent\'s actions) that maximizes the expected reward accumulated by executing a sequence of actions. In cases where the MDP model is not completely known, the best policy needs to be learned through the interaction of the agent in the real environment. This process is called reinforcement learning. However, in applications where it is not allowed to perform experiments in the real environment, for example, sales process, it is possible to perform the reinforcement learning using a sample of past experiences. This process is called Batch Reinforcement Learning. In this work, we study techniques of batch reinforcement learning (BRL), in which learning is done using a history of past interactions, stored in a processes database. As a case study, we apply this technique for learning policies in the sales process for large format printers, whose goal is to build a action recommendation system for beginners sellers.

Page generated in 0.1358 seconds