• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 1
  • Tagged with
  • 21
  • 21
  • 20
  • 20
  • 12
  • 12
  • 12
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um modelo unificado para planejamento sob incerteza / An unified model for planning under uncertainty

Trevizan, Felipe Werndl 31 May 2006 (has links)
Dois modelos principais de planejamento em inteligência artificial são os usados, respectivamente, em planejamento probabilístico (MDPs e suas generalizações) e em planejamento não-determinístico (baseado em model checking). Nessa dissertação será: (1) exibido que planejamento probabilístico e não-determinístico são extremos de um rico contínuo de problemas capaz de lidar simultaneamente com risco e incerteza (Knightiana); (2) obtido um modelo para unificar esses dois tipos de problemas usando MDPs imprecisos; (3) derivado uma versão simplificada do princípio ótimo de Bellman para esse novo modelo; (4) exibido como adaptar e analisar algoritmos do estado-da-arte, como (L)RTDP e LDFS, nesse modelo unificado. Também será discutido exemplos e relações entre modelos já propostos para planejamento sob incerteza e o modelo proposto. / Two noteworthy models of planning in AI are probabilistic planning (based on MDPs and its generalizations) and nondeterministic planning (mainly based on model checking). In this dissertation we: (1) show that probabilistic and nondeterministic planning are extremes of a rich continuum of problems that deal simultaneously with risk and (Knightian) uncertainty; (2) obtain a unifying model for these problems using imprecise MDPs; (3) derive a simplified Bellman\'s principle of optimality for our model; and (4) show how to adapt and analyze state-of-art algorithms such as (L)RTDP and LDFS in this unifying setup. We discuss examples and connections to various proposals for planning under (general) uncertainty.
2

Um modelo unificado para planejamento sob incerteza / An unified model for planning under uncertainty

Felipe Werndl Trevizan 31 May 2006 (has links)
Dois modelos principais de planejamento em inteligência artificial são os usados, respectivamente, em planejamento probabilístico (MDPs e suas generalizações) e em planejamento não-determinístico (baseado em model checking). Nessa dissertação será: (1) exibido que planejamento probabilístico e não-determinístico são extremos de um rico contínuo de problemas capaz de lidar simultaneamente com risco e incerteza (Knightiana); (2) obtido um modelo para unificar esses dois tipos de problemas usando MDPs imprecisos; (3) derivado uma versão simplificada do princípio ótimo de Bellman para esse novo modelo; (4) exibido como adaptar e analisar algoritmos do estado-da-arte, como (L)RTDP e LDFS, nesse modelo unificado. Também será discutido exemplos e relações entre modelos já propostos para planejamento sob incerteza e o modelo proposto. / Two noteworthy models of planning in AI are probabilistic planning (based on MDPs and its generalizations) and nondeterministic planning (mainly based on model checking). In this dissertation we: (1) show that probabilistic and nondeterministic planning are extremes of a rich continuum of problems that deal simultaneously with risk and (Knightian) uncertainty; (2) obtain a unifying model for these problems using imprecise MDPs; (3) derive a simplified Bellman\'s principle of optimality for our model; and (4) show how to adapt and analyze state-of-art algorithms such as (L)RTDP and LDFS in this unifying setup. We discuss examples and connections to various proposals for planning under (general) uncertainty.
3

Algoritmos eficientes para o problema do orçamento mínimo em processos de decisão Markovianos sensíveis ao risco / Efficient algorithms for the minimum budget problem in risk-sensitive Markov decision processes

Moreira, Daniel Augusto de Melo 06 November 2018 (has links)
O principal critério de otimização utilizado em Processos de Decisão Markovianos (mdps) é minimizar o custo acumulado esperado. Embora esse critério de otimização seja útil, em algumas aplicações, o custo gerado por algumas execuções pode exceder um limite aceitável. Para lidar com esse problema foram propostos os Processos de Decisão Markovianos Sensíveis ao Risco (rs-mdps) cujo critério de otimização é maximizar a probabilidade do custo acumulado não ser maior que um orçamento limite definido pelo usuário, portanto garantindo que execuções custosas de um mdp ocorram com menos probabilidade. Algoritmos para rs-mdps possuem problemas de escalabilidade quando lidam com intervalos de custo amplos, uma vez que operam no espaço aumentado que enumera todos os possíveis orçamentos restantes. Neste trabalho é proposto um novo problema que é encontrar o orçamento mínimo para o qual a probabilidade de que o custo acumulado não exceda esse orçamento converge para um máximo. Para resolver esse problema são propostas duas abordagens: (i) uma melhoria no algoritmo tvi-dp (uma solução previamente proposta para rsmdps) e (ii) o primeiro algoritmo de programação dinâmica simbólica para rs-mdps que explora as independências condicionais da função de transição no espaço de estados aumentado. Os algoritmos propostos eliminam estados inválidos e adicionam uma nova condição de parada. Resultados empíricos mostram que o algoritmo rs-spudd é capaz de resolver problemas até 103 vezes maior que o algoritmo tvi-dp e é até 26.2 vezes mais rápido que tvi-dp (nas instâncias que o algoritmo tvi-dp conseguiu resolver). De fato, é mostrado que o algoritmo rs-spudd é o único que consegue resolver instâncias grandes dos domínios analisados. Outro grande desafio em rs-mdps é lidar com custos contínuos. Para resolver esse problema são definidos os rs-mdps híbridos que incluem variáveis contínuas e discretas, além do orçamento limite definido pelo usuário. É mostrado que o algoritmo de programação dinâmica simbólica (sdp), existente na literatura, pode ser usado para resolver esse tipo de mdps. Esse algoritmo foi empiricamente testado de duas maneiras diferentes: (i) comparado com os demais algoritmos propostos em um domínio em que todos são capazes de resolver e (ii) testado em um domínio que somente ele é capaz de resolver. Os resultados mostram que o algoritmo sdp para rs-mdp híbridos é capaz de resolver domínios com custos contínuos sem a necessidade de enumeração de estados, porém em troca do aumento do custo computacional. / The main optimization criterion used in Markovian Decision Processes (mdps) is to minimize the expected cumulative cost. Although this optimization criterion is useful, in some applications the cost generated by some executions may exceed an acceptable threshold. In order to deal with this problem, the Risk-Sensitive Markov Decision Processes (rs-mdps) were proposed whose optimization criterion is to maximize the probability of the cumulative cost not to be greater than an user-defined budget, thus guaranteeing that costly executions of an mdp occur with least probability. Algorithms for rs-mdps face scalability issues when handling large cost intervals, since they operate in an augmented state space which enumerates the possible remaining budgets. In this work, we propose a new challenging problem of finding the minimum budget for which the probability that the cumulative cost does not exceed this budget converges to a maximum. To solve this problem, we propose: (i) an improved version of tvi-dp (a previous solution for rs-mdps) and (ii) the first symbolic dynamic programming algorithm for rs-mdps that explores conditional independence of the transition function in the augmented state space. The proposed algorithms prune invalid states and perform early termination. Empirical results show that rs-spudd is able to solve problems up to 103 times larger than tvi-dp and is up to 26.2 times faster than tvi-dp (in the instances tvi-dp was able to solve). In fact, we show that rs-spudd is the only one that can solve large instances of the analyzed domains. Another challenging problem for rs-mdps is handle continous costs. To solve this problem, we define Hybrid rs-mdps which include continous and discrete variables, and the user-defined budget. In this work, we show that Symbolic Dynamic Programming (sdp) algorithm can be used to solve this kind of mdps. We empirically evaluated the sdp algorithm: (i) in a domain that can be solved with the previously proposed algorithms and (ii) in a domain that only sdp can solve. Results shown that sdp algorithm for Hybrid rs-mdps is capable of solving domains with continous costs, but with a higher computational cost.
4

Planejamento probabilístico com becos sem saída / Probabilistic planning with dead-ends

Simão, Thiago Dias 06 March 2017 (has links)
Planejamento probabilístico lida com a tomada de decisão sequencial em ambientes estocásticos e geralmente é modelado por um Processo de Decisão Markoviano (Markovian Decision Process - MDP). Um MDP modela a interação entre um agente e o seu ambiente: em cada estágio, o agente decide executar uma ação, com efeitos probabilísticos e um certo custo, que irá produzir um estado futuro. O objetivo do agente MDP é minimizar o custo esperado ao longo de uma sequência de escolhas de ação. O número de estágios que o agente atua no ambiente é chamado de horizonte, o qual pode ser finito, infinito ou indefinido. Um exemplo de MDP com horizonte indefinido é o Stochastic Shortest Path MDP (SSP MDP), que estende a definição de MDP adicionando um conjunto de estados meta (o agente para de agir ao alcançar um estado meta). Num SSP MDP é feita a suposição de que é sempre possível alcançar um estado meta a partir de qualquer estado do mundo. No entanto, essa é uma suposição muito forte e que não pode ser garantida em aplicações práticas. Estados a partir dos quais é impossível atingir a meta são chamados de becos-sem-saída. Um beco-sem-saída pode ser evitável ou inevitável (se nenhuma política leva do estado inicial para a meta com probabilidade um). Em trabalhos recentes foram propostas extensões para SSP MDP que permitem a existência de diferentes tipos de beco-sem-saída, bem como algoritmos para resolvê-los. No entanto, a detecção de becos-sem-saída é feita utilizando: (i) heurísticas que podem falhar para becos-sem-saída implícitos ou (ii) métodos mais confiáveis, mas que demandam alto custo computacional. Neste projeto fazemos uma caracterização formal de modelos de planejamento probabilístico com becos-sem-saída. Além disso, propomos uma nova técnica para detecção de becos-sem-saída baseada nessa caracterização e adaptamos algoritmos de planejamento probabilístico para utilizarem esse novo método de detecção. Os resultados empíricos mostram que o método proposto é capaz de detectar todos os becos-sem-saída de um dado conjunto de estados e, quando usado com planejadores probabilísticos, pode tornar esses planejadores mais eficientes em domínios com becos-sem-saída difíceis de serem detectados / Probabilistic planning deals with sequential decision making in stochastic environments and is modeled by a Markovian Decision Process (MDP). An MDP models the interaction between an agent and its environment: at each stage, the agent decides to execute an action, with probabilistic effects and a certain cost which produces a future state. The purpose of the MDP agent is to minimize the expected cost along a sequence of choices. The number of stages that the agent acts in the environment is called horizon, which can be finite, infinite or undefined. An example of MDP with undefined horizon is the Stochastic Shortest Path MDP, which extends the definition of MDP by adding a set of goal states (the agent stops acting after reaching a goal state). In an SSP MDP the assumption is made that it is always possible to achieve a goal state from every state of the world. However, this is a very strong assumption and cannot be guaranteed in practical applications. States from which it is impossible to reach the goal are called dead-ends. A dead-end may be avoidable or unavoidable (when no policy leads from the initial state to the goal with probability one). Recent work has proposed extensions to SSP MDP that allow the existence of different types of dead-ends as well as algorithms to solve them. However, the detection of dead-end is done using: (i) heuristics that may fail to detect implicitly dead-ends or (ii) more reliable methods that require a high computational cost. In this project we make a formal characterization of probabilistic planning models with dead-ends. In addition, we propose a new technique for dead-end detection based on this characterization and we adapt probabilistic planning algorithms to use this new detection method. The empirical results show that the proposed method is able to detect all dead-ends of a given set of states and, when used withprobabilistic planners, can make these planners more efficient in domains with difficult to detect dead-ends.
5

Planejamento probabilístico com becos sem saída / Probabilistic planning with dead-ends

Thiago Dias Simão 06 March 2017 (has links)
Planejamento probabilístico lida com a tomada de decisão sequencial em ambientes estocásticos e geralmente é modelado por um Processo de Decisão Markoviano (Markovian Decision Process - MDP). Um MDP modela a interação entre um agente e o seu ambiente: em cada estágio, o agente decide executar uma ação, com efeitos probabilísticos e um certo custo, que irá produzir um estado futuro. O objetivo do agente MDP é minimizar o custo esperado ao longo de uma sequência de escolhas de ação. O número de estágios que o agente atua no ambiente é chamado de horizonte, o qual pode ser finito, infinito ou indefinido. Um exemplo de MDP com horizonte indefinido é o Stochastic Shortest Path MDP (SSP MDP), que estende a definição de MDP adicionando um conjunto de estados meta (o agente para de agir ao alcançar um estado meta). Num SSP MDP é feita a suposição de que é sempre possível alcançar um estado meta a partir de qualquer estado do mundo. No entanto, essa é uma suposição muito forte e que não pode ser garantida em aplicações práticas. Estados a partir dos quais é impossível atingir a meta são chamados de becos-sem-saída. Um beco-sem-saída pode ser evitável ou inevitável (se nenhuma política leva do estado inicial para a meta com probabilidade um). Em trabalhos recentes foram propostas extensões para SSP MDP que permitem a existência de diferentes tipos de beco-sem-saída, bem como algoritmos para resolvê-los. No entanto, a detecção de becos-sem-saída é feita utilizando: (i) heurísticas que podem falhar para becos-sem-saída implícitos ou (ii) métodos mais confiáveis, mas que demandam alto custo computacional. Neste projeto fazemos uma caracterização formal de modelos de planejamento probabilístico com becos-sem-saída. Além disso, propomos uma nova técnica para detecção de becos-sem-saída baseada nessa caracterização e adaptamos algoritmos de planejamento probabilístico para utilizarem esse novo método de detecção. Os resultados empíricos mostram que o método proposto é capaz de detectar todos os becos-sem-saída de um dado conjunto de estados e, quando usado com planejadores probabilísticos, pode tornar esses planejadores mais eficientes em domínios com becos-sem-saída difíceis de serem detectados / Probabilistic planning deals with sequential decision making in stochastic environments and is modeled by a Markovian Decision Process (MDP). An MDP models the interaction between an agent and its environment: at each stage, the agent decides to execute an action, with probabilistic effects and a certain cost which produces a future state. The purpose of the MDP agent is to minimize the expected cost along a sequence of choices. The number of stages that the agent acts in the environment is called horizon, which can be finite, infinite or undefined. An example of MDP with undefined horizon is the Stochastic Shortest Path MDP, which extends the definition of MDP by adding a set of goal states (the agent stops acting after reaching a goal state). In an SSP MDP the assumption is made that it is always possible to achieve a goal state from every state of the world. However, this is a very strong assumption and cannot be guaranteed in practical applications. States from which it is impossible to reach the goal are called dead-ends. A dead-end may be avoidable or unavoidable (when no policy leads from the initial state to the goal with probability one). Recent work has proposed extensions to SSP MDP that allow the existence of different types of dead-ends as well as algorithms to solve them. However, the detection of dead-end is done using: (i) heuristics that may fail to detect implicitly dead-ends or (ii) more reliable methods that require a high computational cost. In this project we make a formal characterization of probabilistic planning models with dead-ends. In addition, we propose a new technique for dead-end detection based on this characterization and we adapt probabilistic planning algorithms to use this new detection method. The empirical results show that the proposed method is able to detect all dead-ends of a given set of states and, when used withprobabilistic planners, can make these planners more efficient in domains with difficult to detect dead-ends.
6

Programação dinâmica em tempo real para processos de decisão markovianos com probabilidades imprecisas / Real-time dynamic programming for Markov Decision Processes with Imprecise Probabilities

Dias, Daniel Baptista 28 November 2014 (has links)
Em problemas de tomada de decisão sequencial modelados como Processos de Decisão Markovianos (MDP) pode não ser possível obter uma medida exata para as probabilidades de transição de estados. Visando resolver esta situação os Processos de Decisão Markovianos com Probabilidades Imprecisas (Markov Decision Processes with Imprecise Transition Probabilities, MDP-IPs) foram introduzidos. Porém, enquanto estes MDP-IPs se mostram como um arcabouço robusto para aplicações de planejamento no mundo real, suas soluções consomem muito tempo na prática. Em trabalhos anteriores, buscando melhorar estas soluções foram propostos algoritmos de programação dinâmica síncrona eficientes para resolver MDP-IPs com uma representação fatorada para as funções de transição probabilística e recompensa, chamados de MDP-IP fatorados. Entretanto quando o estado inicial de um problema do Caminho mais Curto Estocástico (Stochastic Shortest Path MDP, SSP MDP) é dado, estas soluções não utilizam esta informação. Neste trabalho será introduzido o problema do Caminho mais Curto Estocástico com Probabilidades Imprecisas (Stochastic Shortest Path MDP-IP, SSP MDP-IP) tanto em sua forma enumerativa, quanto na fatorada. Um algoritmo de programação dinâmica assíncrona para SSP MDP-IP enumerativos com probabilidades dadas por intervalos foi proposto por Buffet e Aberdeen (2005). Entretanto, em geral um problema é dado de forma fatorada, i.e., em termos de variáveis de estado e nesse caso, mesmo se for assumida a imprecisão dada por intervalos sobre as variáveis, ele não poderá ser mais aplicado, pois as probabilidades de transição conjuntas serão multilineares. Assim, será mostrado que os SSP MDP-IPs fatorados são mais expressivos que os enumerativos e que a mudança do SSP MDP-IP enumerativo para o caso geral de um SSP MDP-IPs fatorado leva a uma mudança de resolução da função objetivo do Bellman backup de uma função linear para uma não-linear. Também serão propostos algoritmos enumerativos, chamados de RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e fatorados chamados factRTDP-IP (factored RTDP-IP) e factLRTDP-IP (factored LRTDP-IP). Eles serão avaliados em relação aos algoritmos de programação dinâmica síncrona em termos de tempo de convergência da solução e de escalabilidade. / In sequential decision making problems modelled as Markov Decision Processes (MDP) we may not have the state transition probabilities. To solve this issue, the framework based in Markov Decision Processes with Imprecise Transition Probabilities (MDP-IPs) is introduced. Therefore, while MDP-IPs is a robust framework to use in real world planning problems, its solutions are time-consuming in practice. In previous works, efficient algorithms based in synchronous dynamic programming to solve MDP-IPs with factored representations of the probabilistic transition function and reward function, called factored MDP-IPs. However, given a initial state of a system, modeled as a Stochastic Shortest Path MDP (SSP MDP), solutions does not use this information. In this work we introduce the Stochastic Shortest Path MDP-IPs (SSP MDP-IPs) in enumerative form and in factored form. An efficient asynchronous dynamic programming solution for SSP MDP-IPs with enumerated states has been proposed by Buffet e Aberdeen (2005) before which is restricted to interval-based imprecision. Nevertheless, in general the problem is given in a factored form, i.e., in terms of state variables and in this case even if we assume interval-based imprecision over the variables, the previous solution is no longer applicable since we have multilinear parameterized joint transition probabilities. In this work we show that the innocuous change from the enumerated SSP MDP-IP cases to the general case of factored SSP MDP-IPs leads to a switch from a linear to nonlinear objectives in the Bellman backup. Also we propose assynchronous dynamic programming enumerative algorithms, called RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) and LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities), and factored algorithms called factRTDP-IP (factored RTDP-IP) and factLRTDP-IP (factored LRTDP-IP). There algorithms will be evaluated with the synchronous dynamic programming algorithms previously proposed in terms of convergence time and scalability.
7

Soluções eficientes para processos de decisão markovianos baseadas em alcançabilidade e bissimulações estocásticas / Efficient solutions to Markov decision processes based on reachability and stochastic bisimulations

Santos, Felipe Martins dos 09 December 2013 (has links)
Planejamento em inteligência artificial é a tarefa de determinar ações que satisfaçam um dado objetivo. Nos problemas de planejamento sob incerteza, as ações podem ter efeitos probabilísticos. Esses problemas são modelados como Processos de Decisão Markovianos (Markov Decision Processes - MDPs), modelos que permitem o cálculo de soluções ótimas considerando o valor esperado de cada ação em cada estado. Contudo, resolver problemas grandes de planejamento probabilístico, i.e., com um grande número de estados e ações, é um enorme desafio. MDPs grandes podem ser reduzidos através da computação de bissimulações estocásticas, i.e., relações de equivalência sobre o conjunto de estados do MDP original. A partir das bissimulações estocásticas, que podem ser exatas ou aproximadas, é possível obter um modelo abstrato reduzido que pode ser mais fácil de resolver do que o MDP original. No entanto, para problemas de alguns domínios, a computação da bissimulação estocástica sobre todo o espaço de estados é inviável. Os algoritmos propostos neste trabalho estendem os algoritmos usados para a computação de bissimulações estocásticas para MDPs de forma que elas sejam computadas sobre o conjunto de estados alcançáveis a partir de um dado estado inicial, que pode ser muito menor do que o conjunto de estados completo. Os resultados experimentais mostram que é possível resolver problemas grandes de planejamento probabilístico com desempenho superior às técnicas conhecidas de bissimulação estocástica. / Planning in artificial intelligence is the task of finding actions to reach a given goal. In planning under uncertainty, the actions can have probabilistic effects. This problems are modeled using Markov Decision Processes (MDPs), models that enable the computation of optimal solutions considering the expected value of each action when applied in each state. However, to solve big probabilistic planning problems, i.e., those with a large number of states and actions, is still a challenge. Large MDPs can be reduced by computing stochastic bisimulations, i.e., equivalence relations over the original MDP states. From the stochastic bisimulations, that can be exact or approximated, it is possible to get an abstract reduced model that can be easier to solve than the original MDP. But, for some problems, the stochastic bisimulation computation over the whole state space is unfeasible. The algorithms proposed in this work extend the algorithms that are used to compute stochastic bisimulations for MDPs in a way that they can be computed over the reachable set of states with a given initial state, which can be much smaller than the complete set of states. The empirical results show that it is possible to solve large probabilistic planning problems with better performance than the known techniques of stochastic bisimulation.
8

Soluções eficientes para processos de decisão markovianos baseadas em alcançabilidade e bissimulações estocásticas / Efficient solutions to Markov decision processes based on reachability and stochastic bisimulations

Felipe Martins dos Santos 09 December 2013 (has links)
Planejamento em inteligência artificial é a tarefa de determinar ações que satisfaçam um dado objetivo. Nos problemas de planejamento sob incerteza, as ações podem ter efeitos probabilísticos. Esses problemas são modelados como Processos de Decisão Markovianos (Markov Decision Processes - MDPs), modelos que permitem o cálculo de soluções ótimas considerando o valor esperado de cada ação em cada estado. Contudo, resolver problemas grandes de planejamento probabilístico, i.e., com um grande número de estados e ações, é um enorme desafio. MDPs grandes podem ser reduzidos através da computação de bissimulações estocásticas, i.e., relações de equivalência sobre o conjunto de estados do MDP original. A partir das bissimulações estocásticas, que podem ser exatas ou aproximadas, é possível obter um modelo abstrato reduzido que pode ser mais fácil de resolver do que o MDP original. No entanto, para problemas de alguns domínios, a computação da bissimulação estocástica sobre todo o espaço de estados é inviável. Os algoritmos propostos neste trabalho estendem os algoritmos usados para a computação de bissimulações estocásticas para MDPs de forma que elas sejam computadas sobre o conjunto de estados alcançáveis a partir de um dado estado inicial, que pode ser muito menor do que o conjunto de estados completo. Os resultados experimentais mostram que é possível resolver problemas grandes de planejamento probabilístico com desempenho superior às técnicas conhecidas de bissimulação estocástica. / Planning in artificial intelligence is the task of finding actions to reach a given goal. In planning under uncertainty, the actions can have probabilistic effects. This problems are modeled using Markov Decision Processes (MDPs), models that enable the computation of optimal solutions considering the expected value of each action when applied in each state. However, to solve big probabilistic planning problems, i.e., those with a large number of states and actions, is still a challenge. Large MDPs can be reduced by computing stochastic bisimulations, i.e., equivalence relations over the original MDP states. From the stochastic bisimulations, that can be exact or approximated, it is possible to get an abstract reduced model that can be easier to solve than the original MDP. But, for some problems, the stochastic bisimulation computation over the whole state space is unfeasible. The algorithms proposed in this work extend the algorithms that are used to compute stochastic bisimulations for MDPs in a way that they can be computed over the reachable set of states with a given initial state, which can be much smaller than the complete set of states. The empirical results show that it is possible to solve large probabilistic planning problems with better performance than the known techniques of stochastic bisimulation.
9

Planejamento de movimento para robôs móveis baseado em uma representação compacta da Rapidly-Exploring Random Tree (RRT) / Motion planning for mobile robots based on a compact representation of Rapidly-Exploring Random Tree (RRT)

Sousa, Stephanie Kamarry Alves de 17 February 2017 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The evolution of mobile robotics has directed research in this area to solve increasingly complex tasks. In these tasks, when optimized behaviors are specified, a deliberative process is required in order to determine the best action before executing it. In navigation architectures, the deliberation process is usually accomplished by a motion planning strategy. One of the motion planning techniques which has received much of the attention from the researches is the Rapidly-exploring Random Tree (RRT), because of its capacity to reduce representation dimension quickly. The vast majority of the research developed in this area, so far, is mainly focused on developing variants of the RRT for specific problems, not providing detailed analyzes regarding the influence of different variables in the classical algorithm. In this master’s work the focus is precisely to fill this gap by investigating the influence of different variables that compose the classic RRT algorithm, in other words, a detailed analysis of the RRT degrees of freedom and its influence on the final result. In addition, unlike most RRT papers, where the objective is to find the best path between two points, this dissertation presents a new approach in RRT searches by combining the search for a compact and complete representation of the configuration space with a low computational cost and knowledge of only the robot’s goal configuration. To validate and analyze the results obtained, tests by simulation are performed. / A evolução na área de robótica móvel tem direcionado as pesquisas nesse campo para a solução de tarefas cada vez mais complexas. Nessas tarefas, quando comportamentos otimizados são especificados, faz-se necessário um processo de deliberação para determinar a melhor ação a ser tomada antes de executá-la. Em arquiteturas de navegação, o processo de deliberação é normalmente realizado por uma estratégia de planejamento de movimento. Uma das técnicas de planejamento de movimento que tem recebido grande parte da atenção dos pesquisadores dessa área nos últimos tempos é a Rapidly-exploring Random Tree (RRT), pela sua capacidade de reduzir a dimensão da representação de forma rápida. A maioria dos trabalhos de pesquisa desenvolvidos utilizando RRT, até o momento, tem como foco principal desenvolver variantes dessa técnica para problemas específicos, sem apresentar análises aprofundadas quanto a influência das diferentes variáveis do algoritmo clássico. Neste trabalho de mestrado o foco é, justamente, suprir essa carência, investigando a influência das diferentes variáveis que compõem o algoritmo clássico da RRT, ou seja, uma análise detalhada dos graus de liberdade da RRT e suas influências no resultado final. Além disso, diferentemente da maioria dos trabalhos em RRT, em que o objetivo é encontrar o melhor caminho entre dois pontos, esta dissertação apresenta uma nova abordagem nas pesquisas em RRT ao combinar a busca por uma representação compacta e completa do espaço de configuração com um baixo custo computacional e com o conhecimento a priori apenas da configuração de destino do robô. Para validar e analisar os resultados obtidos, testes por simulação são realizados.
10

Programação dinâmica em tempo real para processos de decisão markovianos com probabilidades imprecisas / Real-time dynamic programming for Markov Decision Processes with Imprecise Probabilities

Daniel Baptista Dias 28 November 2014 (has links)
Em problemas de tomada de decisão sequencial modelados como Processos de Decisão Markovianos (MDP) pode não ser possível obter uma medida exata para as probabilidades de transição de estados. Visando resolver esta situação os Processos de Decisão Markovianos com Probabilidades Imprecisas (Markov Decision Processes with Imprecise Transition Probabilities, MDP-IPs) foram introduzidos. Porém, enquanto estes MDP-IPs se mostram como um arcabouço robusto para aplicações de planejamento no mundo real, suas soluções consomem muito tempo na prática. Em trabalhos anteriores, buscando melhorar estas soluções foram propostos algoritmos de programação dinâmica síncrona eficientes para resolver MDP-IPs com uma representação fatorada para as funções de transição probabilística e recompensa, chamados de MDP-IP fatorados. Entretanto quando o estado inicial de um problema do Caminho mais Curto Estocástico (Stochastic Shortest Path MDP, SSP MDP) é dado, estas soluções não utilizam esta informação. Neste trabalho será introduzido o problema do Caminho mais Curto Estocástico com Probabilidades Imprecisas (Stochastic Shortest Path MDP-IP, SSP MDP-IP) tanto em sua forma enumerativa, quanto na fatorada. Um algoritmo de programação dinâmica assíncrona para SSP MDP-IP enumerativos com probabilidades dadas por intervalos foi proposto por Buffet e Aberdeen (2005). Entretanto, em geral um problema é dado de forma fatorada, i.e., em termos de variáveis de estado e nesse caso, mesmo se for assumida a imprecisão dada por intervalos sobre as variáveis, ele não poderá ser mais aplicado, pois as probabilidades de transição conjuntas serão multilineares. Assim, será mostrado que os SSP MDP-IPs fatorados são mais expressivos que os enumerativos e que a mudança do SSP MDP-IP enumerativo para o caso geral de um SSP MDP-IPs fatorado leva a uma mudança de resolução da função objetivo do Bellman backup de uma função linear para uma não-linear. Também serão propostos algoritmos enumerativos, chamados de RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) e fatorados chamados factRTDP-IP (factored RTDP-IP) e factLRTDP-IP (factored LRTDP-IP). Eles serão avaliados em relação aos algoritmos de programação dinâmica síncrona em termos de tempo de convergência da solução e de escalabilidade. / In sequential decision making problems modelled as Markov Decision Processes (MDP) we may not have the state transition probabilities. To solve this issue, the framework based in Markov Decision Processes with Imprecise Transition Probabilities (MDP-IPs) is introduced. Therefore, while MDP-IPs is a robust framework to use in real world planning problems, its solutions are time-consuming in practice. In previous works, efficient algorithms based in synchronous dynamic programming to solve MDP-IPs with factored representations of the probabilistic transition function and reward function, called factored MDP-IPs. However, given a initial state of a system, modeled as a Stochastic Shortest Path MDP (SSP MDP), solutions does not use this information. In this work we introduce the Stochastic Shortest Path MDP-IPs (SSP MDP-IPs) in enumerative form and in factored form. An efficient asynchronous dynamic programming solution for SSP MDP-IPs with enumerated states has been proposed by Buffet e Aberdeen (2005) before which is restricted to interval-based imprecision. Nevertheless, in general the problem is given in a factored form, i.e., in terms of state variables and in this case even if we assume interval-based imprecision over the variables, the previous solution is no longer applicable since we have multilinear parameterized joint transition probabilities. In this work we show that the innocuous change from the enumerated SSP MDP-IP cases to the general case of factored SSP MDP-IPs leads to a switch from a linear to nonlinear objectives in the Bellman backup. Also we propose assynchronous dynamic programming enumerative algorithms, called RTDP-IP (Real-time Dynamic Programming with Imprecise Transition Probabilities), LRTDP-IP (Labeled Real-time Dynamic Programming with Imprecise Transition Probabilities), SSiPP-IP (Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities) and LSSiPP-IP (Labeled Short-Sighted Probabilistic Planner with Imprecise Transition Probabilities), and factored algorithms called factRTDP-IP (factored RTDP-IP) and factLRTDP-IP (factored LRTDP-IP). There algorithms will be evaluated with the synchronous dynamic programming algorithms previously proposed in terms of convergence time and scalability.

Page generated in 0.4977 seconds