• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 14
  • 8
  • 1
  • Tagged with
  • 60
  • 46
  • 41
  • 22
  • 22
  • 22
  • 22
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Query Answering in Probabilistic Data and Knowledge Bases

Ceylan, Ismail Ilkan 04 June 2018 (has links) (PDF)
Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory.
12

Query Answering in Probabilistic Data and Knowledge Bases

Ceylan, Ismail Ilkan 29 November 2017 (has links)
Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory.
13

Certificates and Witnesses for Probabilistic Model Checking

Jantsch, Simon 18 August 2022 (has links)
The ability to provide succinct information about why a property does, or does not, hold in a given system is a key feature in the context of formal verification and model checking. It can be used both to explain the behavior of the system to a user of verification software, and as a tool to aid automated abstraction and synthesis procedures. Counterexample traces, which are executions of the system that do not satisfy the desired specification, are a classical example. Specifications of systems with probabilistic behavior usually require that an event happens with sufficiently high (or low) probability. In general, single executions of the system are not enough to demonstrate that such a specification holds. Rather, standard witnesses in this setting are sets of executions which in sum exceed the required probability bound. In this thesis we consider methods to certify and witness that probabilistic reachability constraints hold in Markov decision processes (MDPs) and probabilistic timed automata (PTA). Probabilistic reachability constraints are threshold conditions on the maximal or minimal probability of reaching a set of target-states in the system. The threshold condition may represent an upper or lower bound and be strict or non-strict. We show that the model-checking problem for each type of constraint can be formulated as a satisfiability problem of a system of linear inequalities. These inequalities correspond closely to the probabilistic transition matrix of the MDP. Solutions of the inequalities are called Farkas certificates for the corresponding property, as they can indeed be used to easily validate that the property holds. By themselves, Farkas certificates do not explain why the corresponding probabilistic reachability constraint holds in the considered MDP. To demonstrate that the maximal reachability probability in an MDP is above a certain threshold, a commonly used notion are witnessing subsystems. A subsystem is a witness if the MDP satisfies the lower bound on the optimal reachability probability even if all states not included in the subsystem are made rejecting trap states. Hence, a subsystem is a part of the MDP which by itself satisfies the lower-bounded threshold constraint on the optimal probability of reaching the target-states. We consider witnessing subsystems for lower bounds on both the maximal and minimal reachability probabilities, and show that Farkas certificates and witnessing subsystems are related. More precisely, the support (i.e., the indices with a non-zero entry) of a Farkas certificate induces the state-space of a witnessing subsystem for the corresponding property. Vice versa, given a witnessing subsystem one can compute a Farkas certificate whose support corresponds to the state-space of the witness. This insight yields novel algorithms and heuristics to compute small and minimal witnessing subsystems. To compute minimal witnesses, we propose mixed-integer linear programming formulations whose solutions are Farkas certificates with minimal support. We show that the corresponding decision problem is NP-complete even for acyclic Markov chains, which supports the use of integer programs to solve it. As this approach does not scale well to large instances, we introduce the quotient-sum heuristic, which is based on iteratively solving a sequence of linear programs. The solutions of these linear programs are also Farkas certificates. In an experimental evaluation we show that the quotient-sum heuristic is competitive with state-of-the-art methods. A large part of the algorithms proposed in this thesis are implemented in the tool SWITSS. We study the complexity of computing minimal witnessing subsystems for probabilistic systems that are similar to trees or paths. Formally, this is captured by the notions of tree width and path width. Our main result here is that the problem of computing minimal witnessing subsystems remains NP-complete even for Markov chains with bounded path width. The hardness proof identifies a new source of combinatorial hardness in the corresponding decision problem. Probabilistic timed automata generalize MDPs by including a set of clocks whose values determine which transitions are enabled. They are widely used to model and verify real-time systems. Due to the continuously-valued clocks, their underlying state-space is inherently uncountable. Hence, the methods that we describe for finite-state MDPs do not carry over directly to PTA. Furthermore, a good notion of witness for PTA should also take into account timing aspects. We define two kinds of subsystems for PTA, one for maximal and one for minimal reachability probabilities, respectively. As for MDPs, a subsystem of a PTA is called a witness for a lower-bounded constraint on the (maximal or minimal) reachability probability, if it itself satisfies this constraint. Then, we show that witnessing subsystems of PTA induce Farkas certificates in certain finite-state quotients of the PTA. Vice versa, Farkas certificates of such a quotient induce witnesses of the PTA. Again, the support of the Farkas certificates corresponds to the states included in the subsystem. These insights are used to describe algorithms for the computation of minimal witnessing subsystems for PTA, with respect to three different notions of size. One of them counts the number of locations in the subsystem, while the other two take into account the possible clock valuations in the subsystem.:1 Introduction 2 Preliminaries 3 Farkas certificates 4 New techniques for witnessing subsystems 5 Probabilistic systems with low tree width 6 Explications for probabilistic timed automata 7 Conclusion
14

Probabilistic Logic, Probabilistic Regular Expressions, and Constraint Temporal Logic

Weidner, Thomas 29 August 2016 (has links) (PDF)
The classic theorems of Büchi and Kleene state the expressive equivalence of finite automata to monadic second order logic and regular expressions, respectively. These fundamental results enjoy applications in nearly every field of theoretical computer science. Around the same time as Büchi and Kleene, Rabin investigated probabilistic finite automata. This equally well established model has applications ranging from natural language processing to probabilistic model checking. Here, we give probabilistic extensions Büchi\\\'s theorem and Kleene\\\'s theorem to the probabilistic setting. We obtain a probabilistic MSO logic by adding an expected second order quantifier. In the scope of this quantifier, membership is determined by a Bernoulli process. This approach turns out to be universal and is applicable for finite and infinite words as well as for finite trees. In order to prove the expressive equivalence of this probabilistic MSO logic to probabilistic automata, we show a Nivat-theorem, which decomposes a recognisable function into a regular language, homomorphisms, and a probability measure. For regular expressions, we build upon existing work to obtain probabilistic regular expressions on finite and infinite words. We show the expressive equivalence between these expressions and probabilistic Muller-automata. To handle Muller-acceptance conditions, we give a new construction from probabilistic regular expressions to Muller-automata. Concerning finite trees, we define probabilistic regular tree expressions using a new iteration operator, called infinity-iteration. Again, we show that these expressions are expressively equivalent to probabilistic tree automata. On a second track of our research we investigate Constraint LTL over multidimensional data words with data values from the infinite tree. Such LTL formulas are evaluated over infinite words, where every position possesses several data values from the infinite tree. Within Constraint LTL on can compare these values from different positions. We show that the model checking problem for this logic is PSPACE-complete via investigating the emptiness problem of Constraint Büchi automata.
15

2. Dresdner Probabilistik-Symposium – Sicherheit und Risiko im Bauwesen

Proske, Dirk 09 October 2008 (has links) (PDF)
Das Dresdner Probabilistik-Symposium findet erfreulicherweise zum zweiten Mal statt. Vielleicht gelingt es den Besuchern, Vortragenden und Veranstaltern, damit eine Tradition aufzubauen. Zweifelsohne ist das Thema der Tagung ein sehr spezielles. Welcher Bauingenieur hat schon bei seiner alltäglichen Arbeit Zeit, über die Sicherheit seiner Konstruktionen nachzudenken? In der Regel hält sich der Bauingenieur an die Regeln der Technik und kann davon ausgehen, daß die Konstruktion dann die erforderliche Sicherheit erbringt. Gerade aber bei anspruchsvollen Aufgaben, Fällen, in denen der Bauingenieur gezwungen ist, eigene Modelle zu entwickeln, muß er die Sicherheit prüfen. In zunehmendem Maße versuchen Bauingenieure sich durch die Bewältigung solcher Aufgaben vom Markt abzugrenzen. Deshalb sehen wir als Veranstalter langfristig auch einen steigenden Bedarf für die Vermittlung von Grundlagen der Sicherheitstheorien im Bauwesen.... (aus dem Vorwort)
16

Die Lösung von Äquivalenzproblemen in der interkulturellen Marketingforschung mittels Methoden der probabilistischen Meßtheorie

Salzberger, Thomas 05 1900 (has links) (PDF)
Die Arbeit befaßt sich mit der Lösung methodischer Probleme der internationalen bzw. interkulturellen Marketingforschung. Im Rahmen quantitativer Untersuchungen stellt die interkulturelle Äquivalenz von Erhebungsdaten eine notwendige Voraussetzung für grenzüberschreitende Vergleiche dar. Die aktuelle Marketingforschung läßt diese Problematik oftmals außer acht oder versucht auf der Grundlage der klassischen Meßtheorie, die Äquivalenz durch faktorenanalytische Ansätze, wie die simultane Faktorenanalyse für mehrere Gruppen, zu gewährleisten. Die Kritik an der klassischen Meßtheorie und damit am gegenwärtigen Zutritt der Äquivalenzbestimmung blieb in der Marketingwissenschaft jedoch weitgehend unbeachtet. Das Ziel der Arbeit besteht in der Aufarbeitung von Methoden der probabilistischen Meßtheorie (Latent Trait Theory) zur Lösung der Äquivalenzprobleme. Mit dem Rasch-Modell steht ein Meßmodell sowohl für dichotome als auch für polytome Daten zur Verfügung, welche im Unterschied zur klassischen Meßtheorie, Meßprobleme zufriedenstellend lösen kann. Am Beispiel der "Consumer Ethnocentric Tendencies Scale" (CETSCALE, Shimp und Sharma, 1987, Datensätze aus Österreich, Sinkovics, 1998, und Südkorea, Shimp et al., 1995) werden die klassischen und probabilistischen Verfahren empirisch demonstriert und einander gegenübergestellt. Die Arbeit schließt mit den wissenschaftstheoretischen Konsequenzen eines neuen Meßparadigmas in der Marketingforschung. (Autorenreferat)
17

Dienste: Zuverlässigkeit, Verfügbarkeit und Ausfallrisiken

Müller, Thomas 03 September 2002 (has links)
Gemeinsamer Workshop von Universitaetsrechenzentrum und Professur Rechnernetze und verteilte Systeme der Fakultaet fuer Informatik der TU Chemnitz. Ausgehend von allgemeinen Qualitätsmerkmalen von IT-Diensten widmet sich der Vortrag besonders den Aspekten Zuverlässigkeit, Verfügbarkeit und Ausfallrisiken. Dabei steht die Darstellung von zwei Verfahren im Vordergrund, die der Beurteilung und Analyse von Risiken dienen: Ereignisbaumanalyse (event tree analysis) und Fehlerbaumanalyse (fault tree analysis). Beide Verfahren werden an Hand eines Beispielszenariums (Mail-Transport) vorgestellt.
18

Sampling time-based sliding windows in bounded space

Gemulla, Rainer, Lehner, Wolfgang 12 October 2022 (has links)
Random sampling is an appealing approach to build synopses of large data streams because random samples can be used for a broad spectrum of analytical tasks. Users are often interested in analyzing only the most recent fraction of the data stream in order to avoid outdated results. In this paper, we focus on sampling schemes that sample from a sliding window over a recent time interval; such windows are a popular and highly comprehensible method to model recency. In this setting, the main challenge is to guarantee an upper bound on the space consumption of the sample while using the allotted space efficiently at the same time. The difficulty arises from the fact that the number of items in the window is unknown in advance and may vary significantly over time, so that the sampling fraction has to be adjusted dynamically. We consider uniform sampling schemes, which produce each sample of the same size with equal probability, and stratified sampling schemes, in which the window is divided into smaller strata and a uniform sample is maintained per stratum. For uniform sampling, we prove that it is impossible to guarantee a minimum sample size in bounded space. We then introduce a novel sampling scheme called bounded priority sampling (BPS), which requires only bounded space. We derive a lower bound on the expected sample size and show that BPS quickly adapts to changing data rates. For stratified sampling, we propose a merge-based stratification scheme (MBS), which maintains strata of approximately equal size. Compared to naive stratification, MBS has the advantage that the sample is evenly distributed across the window, so that no part of the window is over- or underrepresented. We conclude the paper with a feasibility study of our algorithms on large real-world datasets.
19

Most Probable Explanations for Probabilistic Database Queries: Extended Version

Ceylan, Ismail Ilkan, Borgwardt, Stefan, Lukasiewicz, Thomas 28 December 2023 (has links)
Forming the foundations of large-scale knowledge bases, probabilistic databases have been widely studied in the literature. In particular, probabilistic query evaluation has been investigated intensively as a central inference mechanism. However, despite its power, query evaluation alone cannot extract all the relevant information encompassed in large-scale knowledge bases. To exploit this potential, we study two inference tasks; namely finding the most probable database and the most probable hypothesis for a given query. As natural counterparts of most probable explanations (MPE) and maximum a posteriori hypotheses (MAP) in probabilistic graphical models, they can be used in a variety of applications that involve prediction or diagnosis tasks. We investigate these problems relative to a variety of query languages, ranging from conjunctive queries to ontology-mediated queries, and provide a detailed complexity analysis.
20

Ontology-Mediated Queries for Probabilistic Databases: Extended Version

Borgwardt, Stefan, Ceylan, Ismail Ilkan, Lukasiewicz, Thomas 28 December 2023 (has links)
Probabilistic databases (PDBs) are usually incomplete, e.g., contain only the facts that have been extracted from the Web with high confidence. However, missing facts are often treated as being false, which leads to unintuitive results when querying PDBs. Recently, open-world probabilistic databases (OpenPDBs) were proposed to address this issue by allowing probabilities of unknown facts to take any value from a fixed probability interval. In this paper, we extend OpenPDBs by Datalog± ontologies, under which both upper and lower probabilities of queries become even more informative, enabling us to distinguish queries that were indistinguishable before. We show that the dichotomy between P and PP in (Open)PDBs can be lifted to the case of first-order rewritable positive programs (without negative constraints); and that the problem can become NP^PP-complete, once negative constraints are allowed. We also propose an approximating semantics that circumvents the increase in complexity caused by negative constraints.

Page generated in 0.0746 seconds