• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Profinite properties of 3-manifold groups

Wilkes, Gareth January 2018 (has links)
In this thesis we study the finite quotients of 3-manifold groups, concerning both residual properties of the groups and the properties of the 3-manifolds that can be detected using finite quotients of the fundamental group. A key theme is the analysis of when two 3-manifold groups can have the same families of finite quotients. We make a detailed study of this 'profinite rigidity' problem for Seifert fibre spaces and prove complete classification results for these manifolds. From Seifert fibre spaces we continue on this trajectory and extend our classification results to all graph manifolds. We illustrate this classification with examples and several consequences, including for graph knots and for mapping class groups. The third part of the thesis concerns the behaviour of the finite p-group quotients of 3-manifold groups. In general these quotients may be scarce and poorly behaved. We give results showing that some of these issues may be resolved by passing to finite-sheeted covers of the manifold involved. We also prove theorems concerning the p-conjugacy separability of certain graph manifold groups. The concluding chapter of the thesis collects other results linking low-dimensional topology and finite quotients of groups. In particular we prove that finite quotients of a right-angled Artin group distinguish it from other right-angled Artin groups, and we give an argument detecting the prime decomposition of certain 3-manifold groups from the finite p-group quotients.
2

Geometric and profinite properties of groups

Cotton-Barratt, Owen January 2011 (has links)
We use profinite Bass-Serre theory (the theory of profinite group actions on profinite trees) to prove that the fundamental groups of finite graphs of free groups which are l-acylindrical and have finitely generated edge groups are conjugacy separable. We apply this theorem to: demonstrate that a generic positive one-relator group is conjugacy separable; produce a variant of the Rips con- struction in which the output group is conjugacy separable; apply this last to exhibit an example of a strong profinite equivalence between two finitely presented groups, one of which is conjugacy separable and the other having unsolvable conjugacy problem. We further use profinite Bass-Serre theory to demonstrate that having one end is an up-weak pro-C property for any extension- closed class C of finite groups. We show by example that it is not a down-weak pro-p property for any prime p. We consider Korenev's definition of pro-p ends for a pro-p group, and show that the number of ends of a finitely generated residually p group cannot be less than the number of pro-p ends of its pro-p completion. We explore possibilities for, but are ultimately unsuc- cessful in giving, a proper analogue of Stallings' theorem for pro-p groups. We ask which other properties might be profinite, and use another variant of the Rips construction to produce examples of patholog- ical groups such that either they are hyperbolic groups which are not residually finite, or neither property (FA) nor property (T) is an up-weak profinite property.
3

On Minimal Levels of Iwasawa Towers

January 2013 (has links)
abstract: In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits. / Dissertation/Thesis / Ph.D. Mathematics 2013
4

A measure for the number of commuting subgroups in compact groups

Kazeem, Funmilayo Eniola 31 July 2019 (has links)
The present thesis is devoted to the construction of a probability measure which counts the pairs of closed commuting subgroups in infinite groups. This measure turns out to be an extension of what was known in the finite case as subgroup commutativity degree and opens a new approach of study for the class of near abelian groups, recently introduced in [24, 27]. The extremal case of probability one characterises the topologically quasihamiltonian groups, studied originally by K. Iwasawa [30, 31] in the abstract case and then by F. K¨ummich [35, 36, 37], C. Scheiderer [45, 46], P. Diaconis [11] and S. Strunkov [48] in the topological case. Our probability measure turns out to be a useful tool in describing the distance of a profinite group from being topologically quasihamiltonian. We have been inspired by an idea of H. Heyer in the present context of investigation and in fact we generalise some of his techniques, in order to construct a probability measure on the space of closed subgroups of a profinite group. This has been possible because the space of closed subgroups of a profinite group may be approximated by finite spaces and the consequence is that our probability measure may be approximated by finite probability measures. While we have a satisfactory description for profinite groups and compact groups, the case of locally compact groups remains open in its generality.
5

A desigualdade de Golod-Safarevic para grupos pro-p e grupos abstratos / The Golod-Shafarevich inequality for pro-p groups and abstract groups

Rêgo, Yuri Santos, 1989- 08 August 2014 (has links)
Orientador: Dessislava Hristova Kochloukova / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T09:13:05Z (GMT). No. of bitstreams: 1 Rego_YuriSantos_M.pdf: 1142010 bytes, checksum: 548d8ef6ff2800026c8cd65783b81a9f (MD5) Previous issue date: 2014 / Resumo: Neste trabalho estuda-se os principais resultados dados por J. Wilson no artigo "Finite Presentations of Pro-p Groups and Discrete Groups", relacionados à Desigualdade de Golod-¿afarevi? para uma ampla classe de grupos pro-p e abstratos infinitos. Apresentamos a teoria básica de grupos livres abstratos, levando à noção de apresentação de grupos, com foco em apresentações finitas. É feito um estudo sobre grupos profinitos, particularmente no caso pro-p. Abrange-se definições, propriedades algébricas e topológicas básicas, bem como o caso de finitos geradores com o subgrupo de Frattini, e conceitos de completamentos, de grupos pro-p livres, de apresentações de grupos pro-p e de álgebras de grupo completas. No capítulo final estudamos os resultados principais para grupos pro-p e abstratos finitamente apresentáveis, que incluem grupos solúveis e implicações na estrutura de certos grupos satisfazendo a Desigualdade. Os anexos relacionam a teoria aqui apresentada a grupos pro-p de posto finito e homologia e cohomologia de grupos pro-p / Abstract: In this work we study the main results presented by J. Wilson in his paper "Finite Presentations of Pro-p Groups and Discrete Groups", which extend the Golod-¿afarevi? Inequality to a large class of infinite pro-p and abstract groups. In the first chapter we present the basic theory of abstract free groups, focusing on finite presentations. Next we study profinite groups, with focus on pro-p groups. This study ranges from definitions to basic algebraic and topological properties, as well as the cases of finitely generated groups and the Frattini subgroup, and notions of completion, free pro-p groups, presentations of pro-p groups and completed group algebras. In the last chapter we study the main results regarding finite presentations of pro-p and abstract groups, which include soluble groups and implications on the structure of certain groups for which the Inequality holds. In the appendixes we briefly relate the presented theory to pro-p groups of finite rank and homology and cohomology of pro-p groups / Mestrado / Matematica / Mestre em Matemática
6

Propriedades homologicas de grupos pro-p / Homological properties of pro-p groups

Pinto, Aline Gomes da Silva 22 July 2005 (has links)
Orientador: Dessislava H. Kochloukova / Tese (doutorado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-04T14:37:32Z (GMT). No. of bitstreams: 1 Pinto_AlineGomesdaSilva_D.pdf: 2789516 bytes, checksum: 20f42bafb2b08678ceb88f751e8b275e (MD5) Previous issue date: 2005 / Resumo: Neste trabalho, provamos dois resultados sobre propriedades homológicas de grupos pro-p. O primeiro responde positivamente à conjectura de J. King que afirma que, se G é um grupo pro-p metabeliano finitamente gerado e m um inteiro positivo, então G mergulha como subgrupo fechado em um grupo pro-p metabeliano de tipo homológico F Pm. O segundo resultado caracteriza módulos pro-p B de tipo homológico F P m sobre [[ZpG]], onde G é um grupo pro-p metabeliano topologicamente finitamente gerado, dado pela extensão de um grupo pro-p abeliano A por um grupo pro-p abeliano Q, e B é um [[ZpQ]]-módulo pro-p finitamente gerado que é visto como um [[ZpG]]-módulo pro-p via a projeção de G -t Q. A caracterização é dada em termos do invariante para grupos pro-p metabelianos introduzido por J. King [15] e é uma generalização do caso onde B = Zp é o anel de inteiros p-ádicos considerado como G-módulo trivial, que dá a classificação dos grupos pro-p metabelianos de tipo homológico FPm, provado por D. Kochloukova [18] / Abstract: In this work, we prove two results about homological properties of metabelian pro-p groups. The first one answers positively a conjecture suggested by J. King that, if G is a finitely generated metabelian pro-p group and m a positive integer, G embeds in a metabelian pro-p group of homological type F P m. The second result caracterize the modules B of homological type F P mover [[ZpG]], where G is a topologically finitely generated metabelian pro-p group that is an extension of A by Q, with A and Q abelian, and B is a finitely generated pro-p [[ZpQ]]-module that is viewed as a pro-p [[ZpG]]-module via the projection G -f Q. The characterization is given in terms of the invariant introduced by J. King [15] and is a generalization of the case when B = Zp is considered as a trivial [[ZpG]]-module, that gives the classification of metabelian pro-p groups of type FPm, proved by D. Kochloukova [18] / Doutorado / Matematica / Doutor em Matemática
7

Propriedades homologicas de grupos pro-p / Homological properties of pro-p groups

Martin, Maria Eugenia 04 August 2009 (has links)
Orientador: Dessislava Hristova Kochloukova / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T12:02:14Z (GMT). No. of bitstreams: 1 Martin_MariaEugenia_M.pdf: 974097 bytes, checksum: 862be4d1ac3b05cc1a28ba59cf6c0460 (MD5) Previous issue date: 2009 / Resumo: Nesta dissertação discutimos propriedades homológicas de grupos discretos e grupos pro-p. Em particular trabalhamos com grupos abstratos de dualidade de Poincaré orientáveis de dimensão três e seu completamento pro-p. Os primeiros capítulos da dissertação incluem uma exposição sobre as propriedades homológicas básicas de grupos abstratos e grupos pro-p. Finalmente, descrevemos um resultado recente de [KZ], publicado em Transactions MAS ( 2008), que clássica quando o completamento pro-p de um grupo de dualidade de Poincaré orientável de dimensão três de um grupo pro-p de dualidade de Poincaré orientável de dimensão três / Abstract: In this dissertation we discuss homological properties of discrete groups and pro-p groups. In particular we work with groups of abstract of Poincaré duality of dimension three steerable and its pro-p completion. The first chapters of the dissertation include a presentation on the basic homological properties of abstract groups and pro-p groups. Finally, we describe a recent result of [KZ], published in Transactions AMS (2008), which ranks as the pro-p completion of a group of Poincare-steerable dual dimension of three is a group of pro-p duality of Poincare -steerable in three dimensions / Mestrado / Mestre em Matemática
8

Propriedades aritmeticas de corpos com um anel de valorização compativel com o radical de Kaplansky / Arithimetical properties of fields with a valuation ring compatible with the Kaplansky's Radical

Dario, Ronie Peterson 25 March 2008 (has links)
Orientador: Antonio Jose Engler / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T18:05:59Z (GMT). No. of bitstreams: 1 Dario_RoniePeterson_D.pdf: 1951766 bytes, checksum: afa64043636e06c86924e24d6fe65f43 (MD5) Previous issue date: 2008 / Resumo: Esta tese é um estudo das propriedades aritméticas de corpos que possuem um anel de valorização compatível com o Radical de Kaplansky. São utilizados os métodos da teoria algébrica das formas quadráticas, teoria de Galois e principalmente, a teoria de valorizações em corpos. Apresentamos um novo método para a construção de corpos com Radical de Kaplansky não trivial. Demonstramos uma versão do Teorema 90 de Hilbert para o radical. Para uma álgebra quaterniônica D, demonstramos que um anel de valorização do centro de D possui extensão para um anel de valorização total e invariante de D se, e somente se, for compatível com o Radical de Kaplansky / Abstract: This thesis is a study of the arithmetical properties of fields with a valuation ring compatible with the Kaplansky¿s Radical. The methods utilized are algebraic theory of quadratic forms, Galois theory and valuation theory over fields. We present a new construction method of fields with non-trivial Kaplansky¿s Radical. We also prove a version of the Hilbert¿s 90 Theorem for the radical. Let D a quaternion algebra and F the center of D. A valuation ring of F has a extension to a total and invariant valuation ring of D iff is compatible with the Kaplansky¿s Radical / Doutorado / Algebra / Doutor em Matemática
9

Completamentos Pro-p de grupos de dualidade de Poincaré / Pro-p completions of Poincaré duality groups

Lima, Igor dos Santos, 1983- 08 March 2012 (has links)
Orientador: Dessislava Hristova Kochloukova / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T17:04:33Z (GMT). No. of bitstreams: 1 Lima_IgordosSantos_D.pdf: 1446540 bytes, checksum: 1e68bfb627d234fa97739cd2e813b4a9 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho, nos Teoremas Principais, damos condições suficientes para que o completamento pro-p de um grupo abstrato PDn seja virtualmente um grupo pro-p PDs para algum s ? n - 2 com n ? 4. Esse resultado é uma generalização do Teorema 3 em [K-2009]. Nossa prova é baseada em [K-2009] e nos resultados de A. A. Korenev [Ko-2004] e [Ko-2005]. Além disso, damos alguns exemplos de grupos que satisfazem as condições dos Teoremas Principais / Abstract: In this work we give in the Main Theorems suffiient conditions for that the pro- p completion of an abstract orientable PDn group to be virtually a pro-p PDs group for some s ? n - 2 with n ? 4. This result is a generalization of the Theorem 3 in [K-2009]. Our proof is based on [K-2009] and on the results of A. A. Korenev [Ko-2004] and [Ko-2005]. Furthermore we give some examples of groups that satisfy the conditions of the Main Theorems / Doutorado / Matematica / Doutor em Matemática
10

投射有限群表現之形變理論 / Deformation Theory of Representations of Profinite Groups

周惠雯, Chou, Hui Wen Unknown Date (has links)
在本碩士論文中, 我們闡述了投射有限群表現, 以及其形變理論。 我們亦特別研究這些表示在 GL_1 和 GL_2 之形變, 並且給了可表示化 的判定準則。 最後, 我們解釋相對應的泛形變環之扎里斯基切空間與 群餘調之關連, 並計算了 GL_1 的泛形變表現。 / In this master thesis, we give an exposition of the deformation theory of representations for GL_1 and GL_2, respectively, of certain profinite groups. We give rigidity conditions of the fixed representation and verify several conditions for the representability. Finally, we interpret the Zariski tangent spaces of respective universal deformation rings as certain group cohomology and calculate the universal deformation for GL_1.

Page generated in 0.0505 seconds