1 |
Vlastnosti Poulsenových simplexů / Properties of Poulsen simplicesJaroň, Zdeněk January 2012 (has links)
Title: Properties of Poulsen simplices Author: Zdeněk Jaroň Department: Department of Mathematical Analysis Supervisor: Doc. RNDr. Jiří Spurný, Ph.D. Abstract: In the present thesis, we study a generalisation of concept of the Poulsen simplex in general, non-metrizable case. First, for any given simplex F we con- struct a new one S, containing F as a face, having dense set of extreme points and preserving some important properties of F. In the next part, we employ this con- struction to build up, for any given infinite cardinal κ, two simplices S1, S2 with dense extreme boundary, with density character equal to κ and with spaces of affine functions Ac (S1) and Ac (S2) having the same density character, but which are not affinely homeomorphic. Keywords: Poulsen simplex, projective limit, Helly space
|
2 |
Projective limits of weighted (LB) - spaces of holomorphic functionsWEGNER, SVEN-AKE 26 July 2010 (has links)
Los límites proyectivos de límites inductivos de espacios de Banach, también llamados espacios (PLB), surgen de forma natural en el análisis matemático.
En esta tesis estudiamos espacios (PLB), cuyos bloques de construcción son espacios de Banach de funciones holomorfas definidas por normas supremo ponderadas. El estudio de estos espacios extiende la investigación
de Agethen, Bierstedt, Bonet quienes han considerado recientemente espacios (PLB) ponderados de funciones continuas. Desde otra perspectiva, extiende la investigación de límites inductivos ponderados de espacios de Banach de funciones holomorfas, los cuales han sido analizados intensamente por varios autores los últimos años.
Nuestro propósito es estudiar las propiedades localmente convexas de los espacios descritos arriba. En particular, investigamos cuando son ultrabornológicos o tonelados. Además, investigamos bajo qué circunstancias se pueden intercambiar el límite proyectivo y el inductivo y por lo tanto el espacio
(PLB) coincide con el límite inductivo de espacios de Fréchet definidos por la misma sucesión; espacios de este último tipo has sido investigados por Bierstedt, Bonet. Probamos condiciones necesarias para las propiedades de los espacios antes mencionadas bajo hipótesis muy poco restrictivas. En cuanto a
condiciones suficientes usamos métodos homológicos, cuya exploración fue iniciada por Palamodov al
final de los sesenta y continuada por Vogt, Wengenroth y otros a lo largo de los últimos 40 años. Presentamos también un criterio para decidir si los espacios son tonelados adaptado a estas situaciones. No obstante, parece ser inevitable descomponer funciones holomorfas para probar cualquier resultado relativo a a las condiciones suficientes. Por lo tanto introducimos varios contextos en los cuales lo último es posible,
dentro de estos contextos conseguimos la descomposición de diferentes formas;
es decir, por descomposición de polinomios (en el disco y en el espacio), un método conectado con la teoría de proyecciones de Bergman, dos tipos de representaciones del espacio de sucesiones y el método de Hörmander. Bajo algunas hipótesis adicionales (satisfechas, como mostramos, por muchos ejemplos) damos en casi todos los contextos mencionados anteriormente unas caracterizaciones completas de cuándo el espacio es ultrabornológico, cuándo es tonelado y cuándo los límites inductivo y projectivo son intercambiables.
Para finalizar nuestra investigación de espacios (PLB) ponderados, presentamos dos resultados que muestran que espacios de este tipo se pueden escribir en algunos casos como el producto tensorial de un espacio de Fréchet y un espacio (DF). El segundo resultado acerca de representaciones de productos tensoriales muestra que algunos espacios de ultradistribuciones (introducidos recientemente por Schmets y Valdivia) resultan ser espacios-(PLB) ponderados de funciones holomorfas. / Wegner, S. (2010). Projective limits of weighted (LB) - spaces of holomorphic functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8480
|
3 |
Weighted Composition Operators on Spaces of Analytic FunctionsGomez Orts, Esther 30 May 2022 (has links)
[ES] El objetivo de esta tesis es estudiar distintas propiedades de los operadores de composición ponderados en diferentes espacios ponderados de funciones analíticas.
Dado un peso v estrictamente positivo y continuo en el disco complejo, consideramos unos ciertos espacios de Banach de funciones analíticas en el discto complejo. Estos espacios son los conjuntos de las funciones holomorfas en el disco f tales que el supremo, de los z en el disco, de v(z)|f(z)| es finito. También consideramos los espacios de las funciones holorfas f que cumplen que v(z)|f(z)| tiende a cero cuando |z| se acerca a 1.
Dada una sucesión de pesos, trabajamos con los espacios formados por las intersecciones y uniones de los espacios de Banach ponderados determinados por los pesos de la sucesión. El espacio resultante de la intersección es un espacio de Fréchet y es el límite proyectivo de los espacios de Banach citados. Este espacio está provisto de la topología del límite proyectivo. El espacio resultante de la unión es un espacio LB (límite de Banach), y es el límite inductivo de los espacios citados, con la topología del límite inductivo. Cuando la sucesión de pesos viene determinada por los pesos (1-|z|)^n con n natural, el espacio resultante de la unión se llama espacio de Korenblum, que también es un límite inductivo.
En la tesis estudiamos la continuidad, compacidad e invertibilidad de los operadores de composición ponderados en los espacios descritos arriba. También estudiamos algunas propiedades de su espectro y de su espectro puntual. / [CA] L'objectiu d'aquesta tesi és estudiar distintes propietats dels operadors de composició ponderats en diferents espais ponderats de funcions analítiques. Donat un pes v estrictament positiu i continu en el disc del pla complex, considerem uns certs espais de Banach de funcions analítiques en el disc complex. Aquests espais són els conjunts de les funcions holomorfes en el disc f tals que el suprem, dels z en el disc, de v(z)|f(z)| és finit. També considerem els espai de les funcions que verifiquen que v(z)|f(z)| tendeix a zero quan |z| s'apropa a 1. Donada una successió de pesos, treballem amb els espais formats per les interseccions i unions dels espais de Banach ponderats determinats pels pesos de la successió. L'espai resultant de la intersecció és un espai de Fréchet, i és el límit projectiu dels espais de Banach esmentats. Aquest espai està prove ̈ıt de la topologia del l ́ımit projectiu. L'espai resultant de la unió és un espai LB (límit de Banach), i és el límit inductiu dels espais esmentats, amb la topologia del límit inductiu. Quan la successió de pesos està determinada pels pesos (1-|z|)^n amb n natural, l'espai resultant de la unió s'anomena espai de Korenblum, que també és un límit inductiu. En al tesi estudiem la continu ̈ıtat, , compacitat i invertibilitat de l'operador de composició ponderat en els espais descrits abans. També estudiem algunes propietats del seu espectre i del seu espectre puntual. / [EN] The aim of this thesis is to study some properties of the weighted composition operators on different weighted spaces of analytic functions.
Given a weight v strictly positive and continuous on the complex disc, we consider certain Banach spaces of analytic functions on the complex disc. These spaces are the sets of the holomorphic functions on the disc f such that the supremum, when z is in the disc, of v(z)|f(z)| is finite. We also consider the spaces of the holomorphic functions f such that v(z)|f(z)| tends to 0 whenever |z| goes to 1.
Given a sequence of weights, we work with the spaces described by the intersection or union of the weighted Banach spaces determined by the weights in the sequence. The space of the intersection is a Fréchet space and it is the projective limit of the mentioned Banach spaces. This space is endowed with the projective limit topology. The space given by the union is an LB-space (limit of Banach), and it is the inductive limit of the mentioned spaces, with the inductive limit topology. When the sequence is given by the weights (1-|z|)^n with n natural, the space of the union is called Korenblum space, which is also an inductive limit.
In the thesis we study the continuity, compactness and invertibility of the weighted composition operators on the spaces described above. We also study some properties of the spectrum and point spectrum. / Gomez Orts, E. (2022). Weighted Composition Operators on Spaces of Analytic Functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183028
|
Page generated in 0.0512 seconds