Spelling suggestions: "subject:"prompted samma ray"" "subject:"prompted samma rats""
1 |
Benchmark of the fission channels in TALYSNordström, Fredrik January 2021 (has links)
In this project, different fission models in the nuclear reaction code TALYS have been compared to GEF version 2020/1.2. The data included in the comparison are mass yield distributions, average prompt neutron energies per fragment mass, and average multiplicities of both neutrons and γ-rays per fragment mass. The reaction studied in the first part of the project is 1 keV neutron-induced fission of 235U. In the second part of the study, a variety of different nuclei and different incident energies were included in comparisons, but a limitation was set to only include neutron-induced fission. The results from the comparison suggested that TALYS fymodel 2 and 3 were less consistent with GEF than fymodel 4. For the comparisons with experimental data, fymodel 4 also performed better overall. TALYS fymodel 2 and 3 make use of implemented partial versions of GEF to produce fission fragment distributions, while fymodel 4 takes fission fragment distribution data from separate yieldfiles. A database of these yieldfiles with 737 different nuclei and 10 energy levels was produced, to be implemented in future versions of TALYS. The energy levels were chosen to get a range of energies that can be accurately interpolated between. This method of using TALYS fymodel 4 with a yieldfile from GEF consistently showed a strong agreement with GEF version 2020/1.2 for the mass yield distributions and the neutron multiplicities. The γ-ray multiplicities and the neutron energies show a slightly weaker agreement, and TALYS gives consistently smaller values than GEF for these quantities.
|
2 |
In vivo detection of gadolinium by prompt gamma neutron activation analysis: An investigation of the potential toxicity of gadolinium-based contrast agents used in MRIGräfe, James L. 10 1900 (has links)
<p>This thesis describes the development of a method to measure <em>in vivo</em> gadolinium (Gd) content by prompt gamma neutron activation analysis (PGNAA). PGNAA is a quantitative measurement technique that is completely non-invasive. Gadolinium has the highest thermal neutron capture cross section of all the stable elements. Gadolinium-based contrast agents are widely used in magnetic resonance imaging (MRI). The primary intention of this work is to quantify <em>in vivo</em> Gd retention to investigate the potential toxicity of these agents. This study involves the optimization of the McMaster University <sup>238</sup>Pu/Be PGNAA facility for Gd measurements. Monte Carlo simulations were performed in parallel with the experimental work using MCNP version 5. Excellent agreement has been demonstrated between the Monte Carlo model of the system and the experimental measurements (both sensitivity and dosimetry). The initial study on the sensitivity of Gd demonstrated the feasibility of the measurement system. The Monte Carlo dosimetry simulations and experimental survey measurements demonstrated consistently that the radiation exposures for a single measurement were quite low, with an effective dose rate of 1.1 µSv/hr for a leg muscle measurement, 74 µSv/hr for a kidney measurement, and 48 µSv/hr for a liver measurement. The initial studies confirmed the Gd measurement feasibility which ultimately led to an <em>in vivo</em> pilot study on 10 healthy volunteers. The pilot study was successful with 9 out of 10 volunteers having measureable Gd in muscle above the <em>in vivo</em> detection limit of 0.58 ppm within 1 hour of administration, and the remaining participant had detectable Gd 196 minutes post administration. The concentrations measured ranged from 6.9 to 56 uncertainties different from zero. The system has been validated in humans and can now be used in future studies of short or long-term retention of Gd after contrast administration in at risk populations, such as those with reduced kidney function, patients with multiple exposures over the treatment period, and patients who are prescribed higher dosages. In addition, experiments and simulations were extended to another high neutron absorbing element, samarium (Sm).</p> / Doctor of Philosophy (PhD)
|
3 |
Evaluation of Prompt Gamma-ray Data and Nuclear Structure of Niobium-94 with Statistical Model CalculationsTurkoglu, Danyal J. January 2014 (has links)
No description available.
|
4 |
Development of a prompt γ-ray timing system including a proton bunch monitor for range verification in proton therapyPermatasari, Felicia Fibiani 19 June 2023 (has links)
Treatment verification is demanded to mitigate the range uncertainties in proton therapy and, hence, to enhance treatment precision and outcomes. As a non-invasive approach for range verification, the prompt γ-ray timing (PGT) measures the time distribution of the promptly produced γ-rays using fast uncollimated scintillation detectors. However, the measured time spectra of the prompt γ-rays (PGs) are sensitive to phase instabilities between the accelerator radiofrequency (RF) used as the reference time and the actual arrival time of the therapeutic particles at the patient and require online monitoring of the arrival time of the proton bunches. Within this thesis, the development of a PGT system including an appropriate proton bunch monitor (PBM) for range verification in proton therapy was studied. In the first part of the work, two PBM options were explored and characterized under near-to-clinical beam conditions to find a suitable PBM satisfying the prerequisites and constraints for the application in the PGT-based range verification. The selected PBM prototype comprises scintillating fibers read out on both ends with silicon photomultipliers (SiPMs). By placing the PBM at the beam halo, sufficient counting statistics and processable trigger rates could be achieved for the monitoring of the proton bunch periodicity with reasonable statistical precision, while minimizing the interference to the clinical beam delivery. In the second part of the work, a proof-of-principle experiment of the PGT-based range verification with a heterogeneous target was performed together with online monitoring of the proton bunch instabilities. The sensitivity and the overall uncertainty of the PGT technique were evaluated for two proton energies, different thicknesses of air cavity inserts, various tissue-equivalent material inserts, different selections of the PG energy window, and other PGT parameters. The experimental results confirmed that real-time monitoring of the proton range during treatment using the PGT technique is feasible with millimeter precision and submillimeter accuracy at close-to-clinical beam currents and clinically relevant proton energies. The integration of the PBM to the PGT-based range verification marks another important step toward the clinical application of the PGT technique for in vivo verification and qualitative assessment of the proton range during treatment.:List of figures
List of tables
List of abbreviations
1. Introduction
2. Background
2.1. Uncertainties in proton therapy
2.2. Treatment verification in proton therapy
2.3. Prompt γ-ray timing (PGT)
2.3.1. PGT principle
2.3.2. PGT detection system
2.3.3. Time instabilities in the PGT-based range verification
2.4. Aim of the work
3. Development of a proton bunch monitor
3.1. The IBA Proteus 235 System at OncoRay
3.2. General requirements
3.3. Coincidence detection of scattered protons
3.3.1. Detection principle
3.3.2. Motivation
3.3.3. Characterization and performance of the detector
3.4. Scintillating fiber detector
3.4.1. Detection principle
3.4.2. Motivation
3.4.3. Characterization of a single-sided PMT readout fiber
3.4.4. Characterization of a double-sided PMT readout fiber
3.4.5. Characterization of a double-sided SiPM readout fiber
3.5. Comparison of the two proton bunch monitors
3.6. Summary
4. PGT proof-of-principle with the proton bunch monitor
4.1. Materials and methods
4.1.1. Experimental setup
4.1.2. Measurement program
4.1.3. Data analysis
4.1.4. Evaluation of PGT spectra
4.2. Results
4.2.1. Characteristics of PGT spectra
4.2.2. Relative proton range verification
4.3. Discussion and conclusion
4.4. Summary
5. General discussion
5.1. Time instabilities
5.2. Toward clinical translation of the PGT technique
5.3. Conclusion
6. Summary / Zusammenfassung
6.1. Summary
6.2. Zusammenfassung
Bibliography / Die Verifikation der Behandlung ist erforderlich, um die Reichweiteunsicherheiten in der Protonentherapie zu verringern und damit die Behandlungspräzision und die Behandlungsergebnisse zu verbessern. Das Prompt-γ-Ray-Timing (PGT) ist eine nicht-invasive Methode zur Reichweitenverifizierung, bei der die Zeitverteilung der prompt erzeugten γ-Strahlung mit schnellen, nicht-kollimierten Szintillationsdetektoren detektiert wird. Die gemessenen Zeitspektren der prompten γ-Strahlung (PGs) sind jedoch empfindlich gegenüber Phaseninstabilitäten zwischen der als Referenzzeit verwendeten Radiofrequenz (RF) des Beschleunigers und der tatsächlichen Ankunftszeit der therapeutischen Teilchen am Patienten und erfordern eine Online-Überwachung der Ankunftszeit der Protonenmikropulse. Im Rahmen dieser Arbeit wurde die Entwicklung eines PGT-Systems einschließlich eines geeigneten Proton-Bunch-Monitors (PBMs) für die Reichweitenverifikation in der Protonentherapie untersucht. Im ersten Teil der Arbeit wurden zwei PBM-Optionen untersucht und unter kliniknahen Strahlbedingungen charakterisiert, um einen PBM, der die Voraussetzungen und Einschränkungen für die Anwendung in der PGT-basierten Reichweitenverifikation erfüllt, auszuwählen. Der ausgewählte PBM-Prototyp besteht aus szintillierenden Fasern, die an beiden Enden mit Silizium-Photomultipliern (SiPMs) ausgelesen werden. Durch die Platzierung des PBMs im Strahlhalo konnten ausreichende Zählstatistiken und verarbeitbare Triggerraten für die Überwachung der Periodizität der Protonenmikropulse mit einer angemessenen statistischen Genauigkeit erreicht werden, während gleichzeitig die Beeinträchtigung der klinischen Strahlapplikation minimiert wird. Im zweiten Teil der Arbeit wurde der experimentelle Machbarkeitsnachweis für die PGT-basierte Reichweitenverifikation in einem heterogenen Target zusammen mit der Online-Überwachung der Instabilitäten der Protonenmikropulse erbracht. Die Empfindlichkeit und die Gesamtunsicherheit der PGT-Technik wurden für zwei Protonenenergien, unterschiedliche Dicken der Lufthohlraumeinsätze, verschiedene gewebeäquivalente Materialeinsätze, andere Auswahlen der PG-Energiefenster und weitere PGT-Parameter quantifiziert. Die experimentellen Ergebnisse bestätigten, dass die Echtzeitüberwachung der Protonenreichweite während der Behandlung mit Hilfe der PGT-Technik mit Millimeterpräzision und Submillimetergenauigkeit bei kliniknahen Strahlströmen und klinisch relevanten Protonenenergien möglich ist. Die Integration des PBMs in die PGT-basierten Reichweitenverifizierung ist ein weiterer wichtiger Schritt auf dem Weg zur klinischen Anwendung der PGT-Technik für die In-vivo-Reichweitenüberprüfung und die qualitative Bewertung der Protonenreichweite während der Behandlung.:List of figures
List of tables
List of abbreviations
1. Introduction
2. Background
2.1. Uncertainties in proton therapy
2.2. Treatment verification in proton therapy
2.3. Prompt γ-ray timing (PGT)
2.3.1. PGT principle
2.3.2. PGT detection system
2.3.3. Time instabilities in the PGT-based range verification
2.4. Aim of the work
3. Development of a proton bunch monitor
3.1. The IBA Proteus 235 System at OncoRay
3.2. General requirements
3.3. Coincidence detection of scattered protons
3.3.1. Detection principle
3.3.2. Motivation
3.3.3. Characterization and performance of the detector
3.4. Scintillating fiber detector
3.4.1. Detection principle
3.4.2. Motivation
3.4.3. Characterization of a single-sided PMT readout fiber
3.4.4. Characterization of a double-sided PMT readout fiber
3.4.5. Characterization of a double-sided SiPM readout fiber
3.5. Comparison of the two proton bunch monitors
3.6. Summary
4. PGT proof-of-principle with the proton bunch monitor
4.1. Materials and methods
4.1.1. Experimental setup
4.1.2. Measurement program
4.1.3. Data analysis
4.1.4. Evaluation of PGT spectra
4.2. Results
4.2.1. Characteristics of PGT spectra
4.2.2. Relative proton range verification
4.3. Discussion and conclusion
4.4. Summary
5. General discussion
5.1. Time instabilities
5.2. Toward clinical translation of the PGT technique
5.3. Conclusion
6. Summary / Zusammenfassung
6.1. Summary
6.2. Zusammenfassung
Bibliography
|
Page generated in 0.0637 seconds