• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modélisation des oscillations de pression auto-entretenues induites par des tourbillons dans les moteurs à propergol solide / Low order modeling of vortex driven self-sustained pressure pulsations in solid rocket motors

Hirschberg, Lionel 16 January 2019 (has links)
Les moteurs de fusées à ergols solides (SRMs) sont sensibles aux instabilités hydrodynamiques qui peuvent déclencher des oscillations auto-entretenues de pression de grandes amplitudes lorsqu’elles se couplent à l’un des modes acoustiques du système. Le moteur de ces instabilités est la formation de structures tourbillonnaires cohérentes synchronisées par des ondes acoustiques longitudinales. Pour certaines conditions de fonctionnement, les ondes acoustiques générées par l’interaction de ces tourbillons avec la tuyère amorcée du moteur renforcent l’oscillation acoustique. L’objectif des travaux menés dans cette thèse est de déterminer l’amplitude et la fréquence des oscillations de pression au cycle limite des instabilités. Celui-ci est atteint par saturation non linéaire des sources, qui est la conséquence de la formation de grosses structures cohérentes. Dans ce cas l’interaction tourbillon tuyère devient insensible à l’amplitude de l’onde du mode acoustique établi dans le foyer. Dans ces conditions, on peut se concentrer sur l’interaction d’un tourbillon avec la tuyère dans le mécanisme de production sonore. En considérant un écoulement incompressible et l’absence de frottement, un premier modèle analytique est développé permettant de déterminer la production sonore d’un tourbillon ingéré par une tuyère bidimensionnelle plane, lorsque le tourbillon est traité comme une ligne vorticité. Des expériences précédentes indiquent que le volume de la cavité autour de l’entrée d’une tuyère intégrée a une grande influence sur l’amplitude des oscillations de pression dans les grands SRMs. On montre que ceci est dû au champ de vitesse acoustique induit par la compressibilité du gaz dans la cavité qui produit une fluctuation de vitesse transverse à la trajectoire du tourbillon. Une seconde alternative au modèle analytique incompressible est développée en considérant toujours l’absence de frottement, mais un modèle compressible de l’interaction tourbillon-tuyère. Celui-ci repose sur un code aéroacoustique pour les écoulements internes basé sur les équations d’Euler (EIA) qui est utilisé ici pour la simulation de l’interaction tourbillon-tuyère. Une étude systématique de cette interaction a été menée pour une tuyère amorcée. Les résultats ont permis de proposer un modèle de sources localisées pour des ondes planes basé sur une analyse théorique des lois d’échelles de ces phénomènes. Les simulations de ces interactions tourbillons-tuyères ont été réalisées pour différents types de tuyères. En employant un bilan énergétique, un modèle avec un seul paramètre de contrôle est formulé, qui permet de reproduire qualitativement le comportement du cycle limite d’oscillations de pression observées dans des expériences réalisées avec des gaz froids décrites dans la littérature. Finalement le modèle Euler est utilisé pour comparer la production de son par interaction tourbillon-tuyère avec celle due à l’ingestion d’une onde d’entropie, appelée aussi tache d’entropie. Contrairement au cas des tourbillons, le bruit produit par ingestion de taches d’entropie n’est pas sensible au volume de la cavité d’une tuyère intégrée. Ces résultats indiquent que le bruit produit par les tourbillons est dominant dans le cas des SRMs étudiés. L’ensemble de ces travaux permet d’améliorer la compréhension des phénomènes d’interaction entre des non-homogénéités de l’écoulement et la tuyère. Elle permet surtout de déterminer quels sont les facteurs de l’écoulement et les éléments géométriques importants qui pilotent le niveau sonore produit par ces interactions. Les modèles développés dans ces travaux, avec divers degrés d’approximation et de complexité permettent d’enrichir la gamme des outils de conception des SRMs. / Solid Rocket Motors (SRMs) can display self-sustained acoustic oscillations driven by coupling between hydrodynamic instabilities of the internal flow and longitudinal acoustic standing waves. The hydrodynamic instabilities are triggered by the acoustic standing wave and results in the formation of coherent vortical structures. For nominal ranges of flow conditions the sound waves generated by the interaction between these vortices and the choked nozzle at the end of the combustion chamber reinforces the acoustic oscillation. Most available literature on this subject focuses on the threshold of instability using a linear model. The focus of this work is on the prediction of the limit-cycle amplitude. The limit-cycle is reached due to nonlinear saturation of the source, as a consequence of the formation of large coherent vortical structures. In this case the vortex-nozzle interaction becomes insensitive to the amplitude of the acoustic standing wave. Hence, one can focus on the sound generation of a vortex with the nozzle. Sound production can be predicted from an analytical two-dimensional planar incompressible frictionless model using the so-called Vortex Sound Theory. In this model the vorticity is assumed to be concentrated in a line vortex. Experiments indicate that the volume of cavities around so-called “integrated nozzles” have a large influence on the pulsation amplitude for large SRMs. This is due to the acoustical field normal to the vortex trajectory, induced by the compressibility of the gas in this cavity. As an alternative to the incompressible analytical model a compressible frictionless model with an internal Euler Aeroacoustic (EIA) flow solver is used for simulations of vortex-nozzle interaction. A dedicated numerical simulation study focusing on elementary processes such as vortex-nozzle and entropy spot-nozzle interaction allows a systematic variation of relevant parameters and yields insight which would be difficult by means of limit cycle studies of the full engine. A systematic study of the vortex-nozzle interaction in the case of a choked nozzle has been undertaken. The results are summarized by using a lumped element model for plane wave propagation, which is based on theoretical scaling laws. From EIA simulations it appears that sound due to vortex-nozzle interaction is mainly generated during the approach phase and that for the relevant parameter range there is no impingement of the vortex on the nozzle wall as has been suggested in the literature. Using an energy balance approach, a single fit-parameter model is formulated which qualitatively predicts limit-cycle observations in cold gas-scale experiments reported in the literature. Finally the Euler model is used to compare the sound production by vortex-nozzle interaction with that due to the ingestion of an entropy non-uniformity also called entropy spot. In addition to insight, this study provides a systematic procedure to develop a lumped element model for the sound source due to non-homogeneous flow-nozzle interactions in SRMs. Such lumped models based on experimental data or a limited number of flow simulations can be used to ease the design of SRMs.
12

Modélisation et simulation de l’écoulement diphasique dans les moteurs-fusées à propergol solide par des approches eulériennes polydispersées en taille et en vitesse / Eulerian modeling and simulation of two-phase flows in solid rocket motors taking into account size polydispersion and droplet trajectory crossing

Dupif, Valentin 22 June 2018 (has links)
Les gouttes d’oxyde d’aluminium présentes en masse dans l’écoulement interne des moteurs-fusées à propergol solide ont tendance à influerde façon importante sur l’écoulement et sur le fonctionnement du moteur quel que soit le régime. L’objectif de la thèse est d’améliorerles modèles diphasiques eulériens présents dans le code de calcul semi-industriel pour l’énergétique de l’ONERA, CEDRE, en y incluant lapossibilité d’une dispersion locale des particules en vitesse en plus de la dispersion en taille déjà présente dans le code, tout en gardant unestructure mathématique bien posée du système d’équations à résoudre. Cette nouvelle caractéristique rend le modèle capable de traiter lescroisements de trajectoires anisotropes, principale difficulté des modèles eulériens classiques pour les gouttes d’inertie modérément grande.En plus de la conception et de l’analyse détaillée d’une classe de modèles basés sur des méthodes de moments, le travail se concentre sur larésolution des systèmes d’équations obtenus en configurations industrielles. Pour cela, de nouvelles classes de schémas précis et réalisables pourle transport des particules dans l’espace physique et l’espace des phases sont développées. Ces schémas assurent la robustesse de la simulationmalgré différentes singularités (dont des chocs, -chocs, zones de pression nulle et zones de vide...) tout en gardant une convergence d’ordredeux pour les solutions régulières. Ces développements sont conduits en deux et trois dimensions, en plus d’un référentiel bidimensionnelaxisymétrique, dans le cadre de maillages non structurés.La capacité des schémas numériques à maintenir un niveau de précision élevé tout en restant robuste dans toutes les conditions est un pointclé pour les simulations industrielles de l’écoulement interne des moteurs à propergol solide. Pour illustrer cela, le code de recherche SIERRA,originellement conçu durant les année 90 pour les problématiques d’instabilités de fonctionnement en propulsion solide, a été réécrit afin depouvoir comparer deux générations de modèles et de méthodes numériques et servir de banc d’essais avant une intégration dans CEDRE. Lesrésultats obtenus confirment l’efficacité de la stratégie numérique choisie ainsi que le besoin d’introduire, pour les simulations axisymétriques,une condition à la limite spécifique, développée dans le cadre de cette thèse. En particulier, les effets à la fois du modèle et de la méthodenumérique dans le contexte d’une simulation de l’écoulement interne instationnaire dans les moteurs-fusées à propergol solide sont détaillés.Par cette approche, les liens entre des aspects fondamentaux de modélisation et de schémas numériques ainsi que leurs conséquences pour lesapplications sont mis en avant. / The massive amount of aluminum oxide particles carried in the internal flow of solid rocket motors significantly influences their behavior.The objective of this PhD thesis is to improve the two-phase flow Eulerian models available in the semi-industrial CFD code for energeticsCEDRE at ONERA by introducing the possibility of a local velocity dispersion in addition to the size dispersion already taken into accountin the code, while keeping the well-posed characteristics of the system of equations. Such a new feature enables the model to treat anisotropicparticle trajectory crossings, which is a key issue of Eulerian models for droplets of moderately large inertia.In addition to the design and detailed analysis of a class of models based on moment methods, the conducted work focuses on the resolution ofthe system of equations for industrial configurations. To do so, a new class of accurate and realizable numerical schemes for the transport ofthe particles in both the physical and the phase space is proposed. It ensures the robustness of the simulation despite the presence of varioussingularities (including shocks, -shocks, zero pressure area and vacuum...), while keeping a second order accuracy for regular solutions. Thesedevelopments are conducted in two and three dimensions, including the two dimensional axisymmetric framework, in the context of generalunstructured meshes.The ability of the numerical schemes to maintain a high level of accuracy in any condition is a key aspect in an industrial simulation of theinternal flow of solid rocket motors. In order to assess this, the in-house code SIERRA, originally designed at ONERA in the 90’s for solidrocket simulation purpose, has been rewritten, restructured and augmented in order to compare two generations of models and numericalschemes, to provide a basis for the integration of the features developed in CEDRE. The obtained results assess the efficiency of the chosennumerical strategy and confirm the need to introduce a new specific boundary condition in the context of axisymmetric simulations. Inparticular, it is shown that the model and numerical scheme can have an impact in the context of the simulation of the internal flow ofsolid rocket motors and their instabilities. Through our approach, the shed light on the links between fundamental aspects of modeling andnumerical schemes and their consequences on the applications.
13

Étude de stabilité et simulation numérique de l’écoulement interne des moteurs à propergol solide simplifiés / Stability analysis and numerical simulation of simplified solid rocket motors

Boyer, Germain 22 October 2012 (has links)
Cette thèse vise à modéliser les instabilités hydrodynamiques générant des détachements tourbillonnaires pariétaux (ou VSP) responsables des Oscillations De Pression dans les moteurs à propergol solide longs et segmentés par interaction avec l’acoustique du moteur. Ces instabilités sont modélisées en tant que modes de stabilité linéaire globaux de l’écoulement d’un conduit à parois débitantes. En supposant que les structures pariétales émergent d’une perturbation de l’écoulement de base, des modes discrets et indépendants du maillage utilisé sont calculés. Dans ce but, une discrétisation par collocation spectrale multi-domaine est implémentée dans un solveur parallèle afin de s’affranchir de la croissance polynomiale des fonctions propres et de la présence de couches limites. Les valeurs propres ainsi calculées dépendent explicitement des frontières du domaine, à savoir la position de la perturbation et celle de la sortie, et sont ensuite validées par simulation numérique directe. On montre alors qu’elles permettent bien de décrire la réponse à une perturbation initiale de l’écoulement modifié par une rupture de débit pariétale. Ensuite, la simulation d’une réponse forcée par l’acoustique se fait sous forme de structures tourbillonnaires dont les fréquences discrètes sont en accord avec celles des modes de stabilité. Ces structures sont réfléchies en ondes de pression de même fréquences remontant l’écoulement. Finalement, la simulation numérique et la théorie de la stabilité permettent de montrer que le VSP, dont la réponse est linéaire vis-à-vis d’un forçage compressible comme l’acoustique, est le phénomène moteur des Oscillations De Pression. / The current work deals with the modeling of the hydrodynamic instabilities that play a major role in the triggering of the Pressure Oscillations occurring in large segmented solid rocket motors. These instabilities are responsible for the emergence of Parietal Vortex Shedding (PVS) and they interact with the boosters acoustics. They are first modeled as eigenmodes of the internal steady flowfield of a cylindrical duct with sidewall injection within the global linear stability theory framework. Assuming that the related parietal structures emerge from a baseflow disturbance, discrete meshindependant eigenmodes are computed. In this purpose, a multi-domain spectral collocation technique is implemented in a parallel solver to tackle numerical issues such as the eigenfunctions polynomial axial amplification and the existence of boundary layers. The resulting eigenvalues explicitly depend on the location of the boundaries, namely those of the baseflow disturbance and the duct exit, and are then validated by performing Direct Numerical Simulations. First, they successfully describe flow response to an initial disturbance with sidewall velocity injection break. Then, the simulated forced response to acoustics consists in vortical structures wihich discrete frequencies that are in good agreement with those of the eigenmodes. These structures are reflected into upstream pressure waves with identical frequencies. Finally, the PVS, which response to a compressible forcing such as the acoustic one is linear, is understood as the driving phenomenon of the Pressure Oscillations thanks to both numerical simulation and stability theory.
14

Experimental and numerical study of aeroacoustic phenomena in large solid propellant boosters

Anthoine, Jérôme P.L.R. 26 October 2000 (has links)
The present research is an experimental and numerical study of aeroacoustic phenomena occurring in large solid rocket motors (SRM) as the Ariane 5 boosters. The emphasis is given to aeroacoustic instabilities that may lead to pressure and thrust oscillations which reduce the rocket motor performance and could damage the payload. The study is carried out within the framework of a CNES (Centre National d'Etudes Spatiales) research program. <p><p>Large SRM are composed of a submerged nozzle and segmented propellant grains separated by inhibitors. During propellant combustion, a cavity appears around the nozzle. Vortical flow structures may be formed from the inhibitor (Obstacle Vortex Shedding OVS) or from natural instability of the radial flow resulting from the propellant combustion (Surface Vortex Shedding SVS). Such hydrodynamic manifestations drive pressure oscillations in the confined flow established in the motor. When the vortex shedding frequency synchronizes acoustic modes of the motor chamber, resonance may occur and sound pressure can be amplified by vortex nozzle interaction.<p><p>Original analytical models, in particular based on vortex sound theory, point out the parameters controlling the flow-acoustic coupling and the effect of the nozzle design on sound production. They allow the appropriate definition of experimental tests.<p><p>The experiments are conducted on axisymmetric cold flow models respecting the Mach number similarity with the Ariane 5 SRM. The test section includes only one inhibitor and a submerged nozzle. The flow is either created by an axial air injection at the forward end or by a radial injection uniformly distributed along chamber porous walls. The internal Mach number can be varied continuously by means of a movable needle placed in the nozzle throat. Acoustic pressure measurements are taken by means of PCB piezoelectric transducers. A particle image velocimetry technique (PIV) is used to analyse the effect of the acoustic resonance on the mean flow field and vortex properties. An active control loop is exploited to obtain resonant and non resonant conditions for the same operating point.<p><p>Finally, numerical simulations are performed using a time dependent Navier Stokes solver. The analysis of the unsteady simulations provides pressure spectra, sequence of vorticity fields and average flow field. Comparison to experimental data is conducted.<p><p>The OVS and SVS instabilities are identified. The inhibitor parameters, the chamber Mach number and length, and the nozzle geometry are varied to analyse their effect on the flow acoustic coupling.<p><p>The conclusions state that flow acoustic coupling is mainly observed for nozzles including cavity. The nozzle geometry has an effect on the pressure oscillations through a coupling between the acoustic fluctuations induced by the cavity volume and the vortices travelling in front of the cavity entrance. When resonance occurs, the sound pressure level increases linearly with the chamber Mach number, the frequency and the cavity volume. In absence of cavity, the pressure fluctuations are damped.<p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0625 seconds