• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 11
  • 10
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Effect of Interactive Selection on Personalized Drug Prediction Using Interactomes : Examination of Parameters Impacting Drug Treatment Rankings from Network Models for Covid-19 Patients / Personlig läkemedelsprediktion och inverkan av interaktivt urvalgenom användning av interaktom : Undersökning av olika parametrars påverkan påläkemedelsrekommendationer från nätverksmodeller för patienter med Covid-19

Torell, Cornelia January 2023 (has links)
Patients not responding to therapy as expected is one of the most pressing healthcare concerns of today. It causes economical, medical and societal issues along with suffering for patients. This project aimed to address this problem and evaluate how to find the best suited drug treatments for individual patients to treat Covid-19. This project was carried out in collaboration with the company AB Mavatar, that have two networks, one experimental and one predicted, which produce drug treatment rankings differently. Different methods are used to connect drug targets to disease associated genes and thus evaluate what drugs are best suited for specific patients to treat Covid-19. The aim of this project is to examine how network, method and drug category affect the ranking of a drug treatment for four mapped Covid-19 patients. Which drug category a drug belongs to did not seem to significantly affect the drug ranking. Yet, certain drug subcategories were closely correlated. However, these subcategories were not those that are typically associated with Covid-19. The method used to connect drug targets to disease associated genes heavily impacts the ranking of the drug treatment. The methods should be further evaluated to see if some should be excluded or weighted less in drug ranking calculations. The two networks are similar in how they rank different drugs, especially in severely ill patients. Through this project and the evaluation of the impact of method choice, one can start to figure out what should be prioritized among disease related changes. Also, important parameters for personalized treatment can be evaluated. / Patienter som inte svarar på terapi som förväntat är en av de största utmaningarna inom hälso- och sjukvård idag. Det orsakar ekonomiska, medicinska och samhälleliga problem samt lidande för patienter. Det här projektet adresserade detta problem och evaluerade hur man kan hitta det bäst lämpade läkemedlet för specifika patienter för att behandla Covid-19. Projektet gjordes tillsammans med företaget AB Mavatar, som har två interaktom, en experimentell och en datadriven, som rangordnar läkemedelsrekommendationer på olika sätt. Olika metoder används för att koppla samman läkemedelsmål med sjukdomsrelaterade gener och således evaluera vilka läkemedel som är bäst lämpade för specifika patienter för behandling av Covid-19. Syftet med projektet var att undersöka hur nätverk, metod och läkemedelskategori påverkar hur läkemedel rangordnas för fyra kartlagda Covid-19-patienter.  Vilken läkemedelskategori ett läkemedel tillhör tycks inte märkbart påverka läkemedelsrangordning. Trots detta var vissa läkemedelsunderkategorier nära korrelerade. Dock var dessa underkategorier inte typiskt associerade med Covid-19. Metoden för att koppla samman läkemedelsmål med sjukdomsassocierade gener påverkade läkemedelsrangordningen väsentligt. Metoderna borde dock evalueras ytterligare för att eventuellt exkludera eller vikta vissa mindre i uträkningar av läkemedelsrang. De två nätverken är lika i hur de rangordnar olika läkemedel, särskilt för svårt sjuka patienter. Genom detta projekt och genom evaluering av metodvalets påverkan kan man börja begripa hur man borde priorita bland sjukdomsrelaterade förändringar. Dessutom kunde viktiga parametrar inom personlig behandling evalueras.
32

Mechanisms of binding diversity in protein disorder : molecular recognition features mediating protein interaction networks

Hsu, Wei-Lun 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Intrinsically disordered proteins are proteins characterized by lack of stable tertiary structures under physiological conditions. Evidence shows that disordered proteins are not only highly involved in protein interactions, but also have the capability to associate with more than one partner. Short disordered protein fragments, called “molecular recognition features” (MoRFs), were hypothesized to facilitate the binding diversity of highly-connected proteins termed “hubs”. MoRFs often couple folding with binding while forming interaction complexes. Two protein disorder mechanisms were proposed to facilitate multiple partner binding and enable hub proteins to bind to multiple partners: 1. One region of disorder could bind to many different partners (one-to-many binding), so the hub protein itself uses disorder for multiple partner binding; and 2. Many different regions of disorder could bind to a single partner (many-to-one binding), so the hub protein is structured but binds to many disordered partners via interaction with disorder. Thousands of MoRF-partner protein complexes were collected from Protein Data Bank in this study, including 321 one-to-many binding examples and 514 many-to-one binding examples. The conformational flexibility of MoRFs was observed at atomic resolution to help the MoRFs to adapt themselves to various binding surfaces of partners or to enable different MoRFs with non-identical sequences to associate with one specific binding pocket. Strikingly, in one-to-many binding, post-translational modification, alternative splicing and partner topology were revealed to play key roles for partner selection of these fuzzy complexes. On the other hand, three distinct binding profiles were identified in the collected many-to-one dataset: similar, intersecting and independent. For the similar binding profile, the distinct MoRFs interact with almost identical binding sites on the same partner. The MoRFs can also interact with a partially the same but partially different binding site, giving the intersecting binding profile. Finally, the MoRFs can interact with completely different binding sites, thus giving the independent binding profile. In conclusion, we suggest that protein disorder with post-translational modifications and alternative splicing are all working together to rewire the protein interaction networks.

Page generated in 0.0891 seconds