Spelling suggestions: "subject:"provably"" "subject:"movable""
21 |
Zero-knowledge proofs for secure computation / Preuves à divulgation nulle de connaissance pour le calcul sécuriséCouteau, Geoffroy 30 November 2017 (has links)
Dans cette thèse, nous étudions les preuves à divulgation nulle de connaissance, une primitive cryptographique permettant de prouver une assertion en ne révélant rien de plus que sa véracité, et leurs applications au calcul sécurisé. Nous introduisons tout d’abord un nouveau type de preuves à divulgation nulle, appelées arguments implicites à divulgation nulle, intermédiaire entre deux notions existantes, les preuves interactives et les preuves non interactives à divulgation nulle. Cette nouvelle notion permet d’obtenir les mêmes bénéfices en terme d’efficacité que les preuves non-interactives dans le contexte de la construction de protocoles de calcul sécurisé faiblement interactifs, mais peut être instanciée à partir des mêmes hypothèses cryptographiques que les preuves interactives, permettant d’obtenir de meilleures garanties d’efficacité et de sécurité. Dans un second temps, nous revisitons un système de preuves à divulgation nulle de connaissance qui est particulièrement utile dans le cadre de protocoles de calcul sécurisé manipulant des nombres entiers, et nous démontrons que son analyse de sécurité classique peut être améliorée pour faire reposer ce système de preuve sur une hypothèse plus standard et mieux connue. Enfin, nous introduisons une nouvelle méthode de construction de systèmes de preuves à divulgation nulle sur les entiers, qui représente une amélioration par rapport aux méthodes existantes, tout particulièrement dans un modèle de type client-serveur, où un client à faible puissance de calcul participe à un protocole de calcul sécurisé avec un serveur à forte puissance de calcul. / In this thesis, we study zero-knowledge proofs, a cryptographic primitive that allows to prove a statement while yielding nothing beyond its truth, and their applications to secure computation. Specifically, we first introduce a new type of zero-knowledge proofs, called implicit zero-knowledge arguments, that stands between two existing notions, interactive zeroknowledge proofs and non-interactive zero-knowledge proofs. Our new notion provides the same efficiency benefits than the latter when used to design roundefficient secure computation protocols, but it can be built from essentially the same cryptographic assumptions than the former, which allows to get improved efficiency and security guarantees. Second, we revisit a zero-knowledge proof system that is particularly useful for secure computation protocols manipulating integers, and show that the known security analysis can be improved to base the proof system on a more wellstudied assumption. Eventually, we introduce a new method to build zero-knowledge proof systems over the integers, which particularly improves over existing methods in a client-server model, where a weak client executes a secure computation protocol with a powerful server.
|
22 |
Financování dopravní obslužnosti / Financing of transport servicesKUČEROVÁ, Petra January 2017 (has links)
This thesis is occupying with transport services and it's financing. Main goal is appraisal of financial resources for transport services in South Bohemia region. At the beginning, work charakterize transport. It's talking about what role is transport playing in national economy, what is it's meaning and how it's influencing society. Then it's talking about regulation and controlling sphere of transport by transport government policy and shortly describing it's basic strategic documents. Definition of transport services and factors and meanings, which are influencing it, is necessary. In the end theoretical part describing three methods of financing transport services and talking about terms like compensation or provable loss, which are closely related to financing. Practical part is focused on South Bohemia region. It is describing transport services and analyzing financial resources. Public bus transport and regional train transport are solved separately. For analyze were used chosen statistic methods. In the end work is occupying with secondary goal of research, which is suggestion of yet unused method of financing transport services.
|
23 |
Constructing Provably Secure Identity-Based Signature SchemesChethan Kamath, H January 2013 (has links) (PDF)
An identity-based cryptosystem (IBC) is a public-key system where the public key can be represented by any arbitrary string such as an e-mail address. The notion was introduced by Shamir with the primary goal of simplifying certificate management. An identity-based signature(IBS) is the identity-based counter part of a digital signature.
In the first (and primary) part of the work, we take a closer look at an IBS due to Galindo and Garcia–GG-IBS, for short. GG-IBS is derived through a simple and elegant concatenation of two Schnorr signatures and, importantly, does not rely on pairing. The security is established through two algorithms (both of) which use the Multiple-Forking(MF) Algorithm to reduce the problem of computing the discrete logarithm to breaking the IBS. Our focus is on the security argument : It turns out that the argument is flawed and, as a remedy, we sketch a new security argument. However, the resulting security bound is still quite loose, chiefly due to the usage of the MF Algorithm. We explore possible avenues for improving this bound and , to this end, introduce two notions pertaining to random oracles termed dependency and independency. Incorporating (in) dependency allows us to launch the nested replay attack far more effectively than in the MF Algorithm leading to a cleaner,(significantly) tighter security argument for GG-IBS, completing the final piece of the GG-IBS jigsaw.
The second part of the work pertains to the notion of selective-identity (sID) for IBCs. The focus is on the problem of constructing a fully-secure IBS given an sID-secure IBS without using random oracles and with reasonable security degradation.
|
24 |
Criptografia de chave pública sem certificado / Certificateless public key cryptographyGoya, Denise Hideko 16 December 2011 (has links)
A criptografia de chave pública sem certificado (certificateless) é uma alternativa ao modelo convencional de criptografia assimétrica, pois a autenticação da chave pública ocorre implicitamente durante a execução dos protocolos, sem a necessidade de gerenciamento e distribuição de certificados digitais. Potencialmente reduz custos computacionais e o nível de segurança alcançado é maior quando comparado ao modelo baseado em identidade. Nesta tese de doutorado, modelos formais de segurança para acordo de chave com autenticação sem certificado são aprimorados visando dois objetivos paralelos: (1) aumentar o nível de confiança que usuários podem depositar na autoridade geradora de chaves secretas parciais e (2) viabilizar protocolos que sejam eficientes computacionalmente e com propriedades de segurança relevantes, dentre as quais se inclui resistência a ataques de adversários que têm total controle do canal de comunicação e que podem substituir chaves públicas de usuários por valores arbitrários. Para atestar que as melhorias efetuadas são praticáveis e possibilitam que os objetivos sejam alcançados, novos protocolos são propostos para o caso que envolve dois participantes na comunicação. Os protocolos são provados seguros, usando-se técnica de redução de problemas computacionais. / Certificateless public key cryptography is an alternative model to traditional asymmetric key cryptography, because the public key authentication occurs implicitly during a protocol run, with no need of digital certificates management and distribution. It has the potential to reduce computing costs, and it allows a higher security level than the one in the identity-based model. In this PhD thesis, formal security models for certificateless authenticated key agreement are improved with two independent objectives: (1) to increase the trust level for the partial secret key generating authority on which users rely, and (2) to enable computationally efficient protocols, with significant security properties, such as resistance against attacks from adversaries with full control of the communication channel, and from adversaries who are able to replace users\' public keys by any chosen value. In order to demonstrate that these improvements made are feasible and achieve the objectives, new protocols are proposed in the two-party case. These protocols are proved secure by using reduction techniques for provable security.
|
25 |
Key establishment : proofs and refutationsChoo, Kim-Kwang Raymond January 2006 (has links)
We study the problem of secure key establishment. We critically examine the security models of Bellare and Rogaway (1993) and Canetti and Krawczyk (2001) in the computational complexity approach, as these models are central in the understanding of the provable security paradigm. We show that the partnership definition used in the three-party key distribution (3PKD) protocol of Bellare and Rogaway (1995) is flawed, which invalidates the proof for the 3PKD protocol. We present an improved protocol with a new proof of security. We identify several variants of the key sharing requirement (i.e., two entities who have completed matching sessions, partners, are required to accept the same session key). We then present a brief discussion about the key sharing requirement. We identify several variants of the Bellare and Rogaway (1993) model. We present a comparative study of the relative strengths of security notions between the several variants of the Bellare-Rogaway model and the Canetti-Krawczyk model. In our comparative study, we reveal a drawback in the Bellare, Pointcheval, and Rogaway (2000) model with the protocol of Abdalla and Pointcheval (2005) as a case study. We prove a revised protocol of Boyd (1996) secure in the Bellare-Rogaway model. We then extend the model in order to allow more realistic adversary capabilities by incorporating the notion of resetting the long-term compromised key of some entity. This allows us to detect a known weakness of the protocol that cannot be captured in the original model. We also present an alternative protocol that is efficient in both messages and rounds. We prove the protocol secure in the extended model. We point out previously unknown flaws in several published protocols and a message authenticator of Bellare, Canetti, and Krawczyk (1998) by refuting claimed proofs of security. We also point out corresponding flaws in their existing proofs. We propose fixes to these protocols and their proofs. In some cases, we present new protocols with full proofs of security. We examine the role of session key construction in key establishment protocols, and demonstrate that a small change to the way that session keys are constructed can have significant benefits. Protocols that were proven secure in a restricted Bellare-Rogaway model can then be proven secure in the full model. We present a brief discussion on ways to construct session keys in key establishment protocols and also prove the protocol of Chen and Kudla (2003) secure in a less restrictive Bellare-Rogaway model. To complement the computational complexity approach, we provide a formal specification and machine analysis of the Bellare-Pointcheval-Rogaway model using an automated model checker, Simple Homomorphism Verification Tool (SHVT). We demonstrate that structural flaws in protocols can be revealed using our framework. We reveal previously unknown flaws in the unpublished preproceedings version of the protocol due to Jakobsson and Pointcheval (2001) and several published protocols with only heuristic security arguments. We conclude this thesis with a listing of some open problems that were encountered in the study.
|
26 |
Criptografia de chave pública sem certificado / Certificateless public key cryptographyDenise Hideko Goya 16 December 2011 (has links)
A criptografia de chave pública sem certificado (certificateless) é uma alternativa ao modelo convencional de criptografia assimétrica, pois a autenticação da chave pública ocorre implicitamente durante a execução dos protocolos, sem a necessidade de gerenciamento e distribuição de certificados digitais. Potencialmente reduz custos computacionais e o nível de segurança alcançado é maior quando comparado ao modelo baseado em identidade. Nesta tese de doutorado, modelos formais de segurança para acordo de chave com autenticação sem certificado são aprimorados visando dois objetivos paralelos: (1) aumentar o nível de confiança que usuários podem depositar na autoridade geradora de chaves secretas parciais e (2) viabilizar protocolos que sejam eficientes computacionalmente e com propriedades de segurança relevantes, dentre as quais se inclui resistência a ataques de adversários que têm total controle do canal de comunicação e que podem substituir chaves públicas de usuários por valores arbitrários. Para atestar que as melhorias efetuadas são praticáveis e possibilitam que os objetivos sejam alcançados, novos protocolos são propostos para o caso que envolve dois participantes na comunicação. Os protocolos são provados seguros, usando-se técnica de redução de problemas computacionais. / Certificateless public key cryptography is an alternative model to traditional asymmetric key cryptography, because the public key authentication occurs implicitly during a protocol run, with no need of digital certificates management and distribution. It has the potential to reduce computing costs, and it allows a higher security level than the one in the identity-based model. In this PhD thesis, formal security models for certificateless authenticated key agreement are improved with two independent objectives: (1) to increase the trust level for the partial secret key generating authority on which users rely, and (2) to enable computationally efficient protocols, with significant security properties, such as resistance against attacks from adversaries with full control of the communication channel, and from adversaries who are able to replace users\' public keys by any chosen value. In order to demonstrate that these improvements made are feasible and achieve the objectives, new protocols are proposed in the two-party case. These protocols are proved secure by using reduction techniques for provable security.
|
27 |
Construction of Secure and Efficient Private Set Intersection ProtocolKumar, Vikas January 2013 (has links) (PDF)
Private set intersection(PSI) is a two party protocol where both parties possess a private set and at the end of the protocol, one party (client) learns the intersection while other party (server) learns nothing. Motivated by some interesting practical applications, several provably secure and efficient PSI protocols have appeared in the literature in recent past. Some of the proposed solutions are secure in the honest-but-curious (HbC) model while the others are secure in the (stronger) malicious model. Security in the latter is traditionally achieved by following the classical approach of attaching a zero knowledge proof of knowledge (ZKPoK) (and/or using the so-called cut-and-choose technique). These approaches prevent the parties from deviating from normal protocol execution, albeit with significant computational overhead and increased complexity in the security argument, which includes incase of ZKPoK, knowledge extraction through rewinding.
We critically investigate a subset of the existing protocols. Our study reveals some interesting points about the so-called provable security guarantee of some of the proposed solutions. Surprisingly, we point out some gaps in the security argument of several protocols. We also discuss an attack on a protocol when executed multiple times between the same client and server. The attack, in fact, indicates some limitation in the existing security definition of PSI. On the positive side, we show how to correct the security argument for the above mentioned protocols and show that in the HbC model the security can be based on some standard computational assumption like RSA and Gap Diffie-Hellman problem. For a protocol, we give improved version of that protocol and prove security in the HbC model under standard computational assumption.
For the malicious model, we construct two PSI protocols using deterministic blind signatures i.e., Boldyreva’s blind signature and Chaum’s blind signature, which do not involve ZKPoK or cut-and-choose technique. Chaum’s blind signature gives a new protocol in the RSA setting and Boldyreva’s blind signature gives protocol in gap Diffie-Hellman setting which is quite similar to an existing protocol but it is efficient and does not involve ZKPoK.
|
Page generated in 0.0504 seconds