• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 17
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Construction of an efficient degradation system for cellulosic biomass / セルロースバイオマスの高効率分解系の構築

Bae, Jungu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19041号 / 農博第2119号 / 新制||農||1032(附属図書館) / 学位論文||H27||N4923(農学部図書室) / 31992 / 京都大学大学院農学研究科応用生命科学専攻 / (主査)教授 植田 充美, 教授 渡邊 隆司, 教授 梅澤 俊明 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
22

The Effect of Winding Curvature and Core Permeability on the Power Losses and Leakage Inductance of High-Frequency Transformers

Whitman, Daniel J. 13 August 2021 (has links)
No description available.
23

Superfluidity in Ultrathin Cuprates and Niobium/Ferromagnetic Heterostructures

Hinton, Michael J. 14 May 2015 (has links)
No description available.
24

Electromagnetic Fields, Power Losses, and Resistance of High-Frequency Magnetic Devices

Whitman, Daniel Joseph 29 March 2010 (has links)
No description available.
25

Winding Resistance and Winding Power Loss of High-Frequency Power Inductors

Wojda, Rafal P. 28 August 2012 (has links)
No description available.
26

Proximity Effects in the Electron Impact Mass Spectra of 2-Substituted Benzazoles

Chantler, Thomas, Perrin, Victoria L., Donkor, Rachel E., Cawthorne, Richard S., Bowen, Richard D. January 2004 (has links)
No / The 70 eV electron impact mass spectra of a wide range of 2-substituted benzazoles are reported and discussed. Particular attention is paid to the mechanistic significance and analytical utility of [M–H]+ and [M–X]+ signals in the spectra of benzazoles in which the 2-substituent contains a terminal aryl group with one or more substituents, X. Loss of H or X occurs preferentially from an ortho-position from ionized 2-benzylbenzimidazoles, 2-phenethylbenzimidazoles, 2-styrylbenzimidazoles, 2-styrylbenzoxazoles and 2-styrylbenzothiazoles. In the three styrylbenzazole series, the [M–H]+ and/or [M–X]+ signals dominate the spectra. This unusually facile loss of H or X may be attributed to a proximity effect, in which cyclization of the ionized molecule is followed by elimination of an ortho-substituent to give an exceptionally stable polycyclic ion. Formation of a new five- or six-membered ring by the proximity effect occurs rapidly; cyclization to a seven-membered ring takes place rather less readily; but formation of a ring with only four atoms or more than seven atoms is not observed to a significant extent. The proximity effect competes effectively with loss of a methyl radical by simple cleavage of an ethyl, isopropyl and even a t-butyl group in the pendant aromatic ring of ionized 2-(4-alkylstyryl) benzazoles.
27

Mass spectra of halogenostyrylbenzoxazoles

Ayrton, Stephen T., Panova, Jekaterina, Michalik, Adam R., Martin, William H.C., Gallagher, R.T., Bowen, Richard D. 20 August 2012 (has links)
No / Several series of styrylbenzoxazoles of general formula XC6H3(NCO)CH=CHC6H4Y [X= F, Cl or Br; Y = H, F, Cl, Br, CH3 or CH3O] have been investigated by positive ion electrospray and electron ionization mass spectrometry. These compounds, many of which are biologically active or have pharmaceutical potential, show in their electrospray spectra strong peaks for MH+ ions, which undergo relatively little fragmentation. The electron ionization spectra are extremely clean, being dominated by the loss of an atom or radical, Y*, from the ortho position of the pendant ring, by a rearrangement that may be interpreted as a proximity effect. The resultant [M-Y](+) ions are exceptionally stable and rarely undergo further fragmentation. The analytical value of this proximity effect, which is analogous to intramolecular aromatic substitution, in revealing the presence of a substituent in the pendant ring and determining its position, is emphasized. Elimination of a species (including H* or F*) derived from an ortho substituent in the pendant ring occurs even when apparently more favourable alternative fragmentation is possible by direct cleavage of the C-X bond (X = Cl or Br) in the benzoxazole ring.
28

Nanoscale investigation of superconductivity and magnetism using neutrons and muons

Ray, Soumya Jyoti January 2012 (has links)
The work presented in this thesis was broadly focussed on the investigation of the magnetic behaviour of different superconducting materials in the form of bulk (singe crystals and pellets) and thin films (nanomagnetic devices like superconducting spin valves etc). Neutrons and muons were extensively used to probe the structural and magnetic behaviour of these systems at the nanoscale along with bulk characterisation techniques like high-sensitive magnetic property measurements, scanning probe microscopy and magneto-transport measurements etc. The nanoscale interplay of Superconductivity and Ferromagnetism was studied in the thin film structures using a combination of Polarised Neutron Reflectivity (PNR) and Low Energy Muon Spin Rotation (LE-µSR) techniques while bulk Muon Spin Rotation (µSR) technique was used for microscopic magnetic investigation in the bulk materials. In the Fe/Pb heterostructure, evidence of the Proximity Effect was observed in the form of an enhancement of the superconducting penetration depth (λs) with an increase in the ferromagnetic layer thickness (dF) in both the bilayered and the trilayered structures. The existence of an Inverted Magnetic Region was also detected at the Ferromagnet-Superconductor (F/S) interface in the normal state possibly originating from the induced spin polarisation within the Pb layer in the presence of the neighbouring Fe layer(s). The spatial size (height and width) of the Inverted Magnetic Region did not change much while cooling the sample below the superconducting transition temperature(Tc)and it also stayed unaffected by an increase in the Fe layer thickness and by a change of the applied magnetic field. In the superconducting spin valve structure containing Permalloy (Py) as ferromagnetic layer and Nb as the superconducting layer, LE-µSR measurements revealed the evidence of the decay of magnetic flux density (as a function of thickness) within the Nb layer symmetrically from the Py/Nb interfaces towards the centre of the Nb layer in the normal state. The thickness dependent magnetisation decay occurred over two characteristic length scales in the normal state that stayed of similar values in the superconducting state also. In the superconducting state, an additional contribution towards the magnetisation was found in the vicinity of the Py/Nb interfaces possibly originating from the spin polarisation of the singlet Cooper pairs in these areas. The nanoscale magnetic investigation on a highly engineered F/S/F structure (where each of the F blocks made of multiple Co/Pd layers with magnetic moments aligned perpendicular to the plane of these layers and neighbouring magnetic blocks separated by Ru layers giving rise to antiferromagnetic alignment) using LE-µSR showed an antisymmetric thickness dependent magnetic flux density profile with two characteristic length scales. In the superconducting state, the magnetic flux density profile got modified within the superconducting Nb₆₇Ti₃₃ layer near the F/S interfaces in a way similar to that of observed in the case of Py/Nb system, most likely because of the spin polarisation of the superconducting electron pairs. The vortex magnetic phase diagram of Bi₂Sr₂Ca₂Cu₃O10-δ was studied using the Muon Spin Rotation (µSR) technique to explore the effects of vortex lattice melting and rearrangements for vortex transitions and crossover as a function of magnetic field and temperatures. At low magnetic fields, the flux vortices undergo a first order melting transition from a vortex lattice to a vortex liquid state with increasing temperature while another transition also occurred with increasing field at fixed temperature to a vortex glass phase at the lowest temperatures. Evidence of a frozen liquid phase was found in the intermediate field region at low temperature in the form of a lagoon in the superconducting vortex state which is in agreement with earlier observations made in BiSCCO-2212. The magnetic behaviour of the unconventional superconductor Sr₂RuO₄ was investigated using µSR to find the evidence of normal state magnetism and the nature of the vortex state. In the normal state, a weak hysteretic magnetic signal was detected over a wide temperature and field range believed to be supporting the evidence of a chiral order parameter. The nature of the vortex lattice structure was obtained in different parts of the magnetic phase diagram and the evidence of magnetic field driven transition in the lattice structure was detected from a Triangular→Square structure while the vortex lattice stayed Triangular over the entire temperature region below Tc at low fields with a disappearance of pinning at higher temperatures.
29

Magnetic structures and proximity effects in rare-earth/transition metal ferromagnetic and superconductor systems

Higgs, Thomas David Charles January 2018 (has links)
The antiferromagnetic coupling between a rare-earth (RE) and a tran- sition metal (TM) ferromagnet can be exploited to engineer normal state and superconducting functional devices. RE/TM ferromagnetic multi- layers were previously used as spin-mixers to generate spin-triplet su- percurrents. This was possible due to magnetic inhomogeneity present in the devices, however the precise nature of the inhomogeneity was not understood. Here we present a comprehensive study of the Ni/Gd/Ni system using a powerful element-specific measurement technique: x-ray magnetic circular dichroism. In order to analyse the experimental results we present a novel model based on the Stoner-Wohlfarth model, which shows that significant inhomogeneity exists at the Ni/Gd interfaces due to the competition between the exchange energies within the system and the Zeeman energy of the applied magnetic field. The experiment and model together provide a complete overview of the Ni/Gd/Ni system due to the breadth of temperatures and thicknesses studied. The knowledge gained from this work is then applied to designing and test- ing new spin valves based on the intrinsic inhomogeneity at the RE/TM interface, and both Ni/Gd- and Gd/Ho-based devices show reversible magnetic switching behaviour which alters the superconducting critical temperature.
30

Establishing very low speed, disturbance-free flow for anemometry in turbulent boundary layers

Lanspeary, Peter V. January 1998 (has links)
This document addresses problems encountered when establishing the very low air-flow speeds required for experimental investigations of the mechanisms of low-Reynolds-number boundary-layer turbulence. Small-scale motions in the near-wall region are important features of turbulent boundary-layer dynamics, and, if these features are to be resolved by measurements in air with conventionally-sized hot-wire probes, a well-behaved canonical turbulent boundary layer must be developed at free stream flow speeds no higher than 4 m/s. However, at such low speeds, the turbulent boundary layers developed on the walls of a wind tunnel are very susceptible to perturbation by non-turbulent time-dependent flow structures which originate upstream from the test section in the laminar flow at the inlet and in the contraction. Four different non-turbulent flow structures have been identified. The first is a result of quasi-two-dimensional separation of the laminar boundary-layer from the surfaces of the wind-tunnel contraction. Potential flow simulations show that susceptibility to this form of separation is reduced by increasing the degree of axisymmetry in the cross-section geometry and by decreasing the streamwise curvature of the concave surfaces. The second source of time-dependence in the laminar boundary-layer flow is an array of weak streamwise vortices produced by Goertler instability. The Goertler vortices can be removed by boundary-layer suction at the contraction exit. The third form of flow perturbation, revealed by visualisation experiments with streamers, is a weak large-scale forced-vortex swirl produced by random spatial fluctuations of temperature at the wind-tunnel inlet. This can be prevented by thorough mixing of the inlet flow; for example, a centrifugal blower installed at the inlet reduces the amplitude of temperature nonuniformity by a factor of about forty and so prevents buoyancy-driven swirl. When subjected to weak pressure gradients near the start of a wind-tunnel contraction, Goertler vortices in laminar wall layers can develop into three-dimensional separations with strong counter-rotating trailing vortices. These trailing vortices are the fourth source of unsteady flow in the test-section. They can be suppressed by a series of appropriately located screens which remove the low-speed-streak precursors of the three-dimensional separations. Elimination of the above four contaminating secondary flows permits the development of a steady uniform downstream flow and well-behaved turbulent wall layers. Measurements of velocity in the turbulent boundary layer of the test-section have been obtained by hot-wire anemometry. When a hot-wire probe is located within the viscous sublayer, heat transfer from the hot-wire filament to the wall produces significant errors in the measurements of both the mean and the fluctuating velocity components. This error is known as wall-proximity effect and two successful methods are developed for removing it from the hot-wire signal. The first method is based on the observation that, if all experimental parameters except flow speed and distance from the wall are fixed, the velocity error may be expressed nondimensionally as a function of only one parameter, in the form DeltaU^+=f(y^+). The second method, which also accommodates the effect of changing the hot-wire overheat ratio, is based on a dimensional analyis of heat transfer to the wall. Velocity measurements in the turbulent boundary layer at the mid-plane of a nearly square test-section duct have established that, when the boundary-layer thickness is less than one quarter of the duct height, mean-velocity characteristics are indistinguishable from those of a two-dimensional flat-plate boundary layer. In thicker mid-plane boundary layers, the mean-velocity characteristics are affected by stress-induced secondary flow and by lateral constriction of the boundary-layer wake region. A significant difference between flat-plate and duct boundary layers is also observed in momentum-balance calculations. The momentum-integral equation for a duct requires definitions of momentumd and displacement thickness which are different from those given for flat-plate boundary layers. Momentum-thickness growth rates predicted by the momentum-integral equation for a duct agree closely with measurements of the newly defined duct momentum thickness. Such agreement cannot be obtained in terms of standard flat-plate momentum thickness. In duct boundary layers with Reynolds numbers Re_theta between 400 and 2600, similarity in the wake-region distributions of streamwise turbulence statistics has been obtained by normalising distance from the wall with the flat-plate momentum thickness, theta_2. This result indicates that, in contrast with the mean velocity characteristics, the structure of mid-plane turbulence does not depend on the proportion of duct cross-section occupied by boundary layers and is essentially the same as in a flat-plate boundary layer. For Reynolds numbers less than 400, both wall-region and wake-region similarity fail because near-wall turbulence events interact strongly with the free stream flow and because large scale turbulence motions are directly influenced by the wall. In these conditions, which exist in both duct and flat-plate turbulent boundary layers, there is no distinct near-wall or wake region, and the behaviour of turbulence throughout the boundary layer depends on both wall variables and on outer region variables simultaneously. / Thesis (Ph.D.)--School of Mechanical Engineering, 1998.

Page generated in 0.0833 seconds