• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ranking of tree-ring based temperature reconstructions of the past millennium

Trouet, Valerie, Esper, Jan, Krusic, Paul J., Ljungqvist, Fredrik C., Luterbacher, Juerg, Carrer, Marco, Cook, Ed, Davi, Nicole K., Hartl-Meier, Claudia, Kirdyanov, Alexander, Konter, Oliver, Myglan, Vladimir, Timonen, Mauri, Treydte, Kerstin, Villalba, Ricardo, Yang, Bao, Buntgen, Ulf 01 August 2016 (has links)
Tree-ring chronologies are widely used to reconstruct high-to low-frequency variations in growing season temperatures over centuries to millennia. The relevance of these timeseries in large-scale climate reconstructions is often determined by the strength of their correlation against instrumental temperature data. However, this single criterion ignores several important quantitative and qualitative characteristics of tree-ring chronologies. Those characteristics are (i) data homogeneity, (ii) sample replication, (iii) growth coherence, (iv) chronology development, and (v) climate signal including the correlation with instrumental data. Based on these 5 characteristics, a reconstruction-scoring scheme is proposed and applied to 39 published, millennial-length temperature reconstructions from Asia, Europe, North America, and the Southern Hemisphere. Results reveal no reconstruction scores highest in every category and each has their own strengths and weaknesses. Reconstructions that perform better overall include N-Scan and Finland from Europe, E-Canada from North America, Yamal and Dzhelo from Asia. Reconstructions performing less well include W-Himalaya and Karakorum from Asia, Tatra and S-Finland from Europe, and Great Basin from North America. By providing a comprehensive set of criteria to evaluate tree-ring chronologies we hope to improve the development of large-scale temperature reconstructions spanning the past millennium. All reconstructions and their corresponding scores are provided at www.blogs.uni-mainz.de/fb09climatology. (C) 2016 Elsevier Ltd. All rights reserved.
2

Modelling regional climate-vegetation interactions in Europe : A palaeo perspective

Strandberg, Gustav January 2017 (has links)
Studies in paleoclimate are important because they give us knowledge about how the climate system works and puts the current climate change in necessary perspective. By studying (pre)historic periods we increase our knowledge not just about these periods, but also about the processes that are important for climatic variations and changes. This thesis deals mainly with the interaction between climate and vegetation. Vegetation changes can affect climate in many different ways. These effects can be divided into two main categories: biogeochemical and biogeophysical processes. This thesis studies the biogeophysical effects of vegetation changes on climate in climate models. Climate models are a necessary tool for investigating how climate responds to changes in the climate system, as well as for making predictions of future climate. The biogeophysical processes are strongly related to characteristics of the land surface. Vegetation changes alter the land surface’s albedo (ability to reflect incoming solar radiation), roughness and evapotranspiration (the sum of evaporation and tran-spiration), which in turn affects the energy fluxes between the land surface and the atmosphere and thereby the climate. It is not, however, evident in what way; denser vegetation (e.g. forest instead of grassland) gives decreased albedo, which results in higher temperature, but also increased evapotranspiration, which contrastingly results in lower temperature. Vegetation changes are in this thesis studied in four different (pre)historic periods: two very cold periods with no human influence (c. 44,000 and 21,000 years ago), one warm period with minor human influence (c. 6,000 years ago) and a cold period with substantial human influence (c. 200 years ago). In addition to that the present climate is studied. The combination of these periods gives an estimate of the effect of both natural and anthropogenic vegetation on climate in different climatic contexts. The results show that vegetation changes can change temperature with 1–3 °C depending on season and region. The response is not the same everywhere, but depends on local properties of the land surface. During the winter half of the year, the albedo effect is usually most important as the difference in albedo between forest and open land is very large. During the summer half of the year the evapotranspiration effect is usually most important as differences in albedo between different vegetation types are smaller. A prerequisite for differences in evapotranspiration is that there is sufficient amount of water available. In dry regions, evapotranspiration does not change much with changes in vegetation, which means that the albedo effect will dominate also in summer. The conclusion of these studies is that vegetation changes can have a considerable effect on climate, comparable to the effect of increasing amounts of greenhouse gases in scenarios of future climate. Thus, it is important to have an appropriate description of the vegetation in studies of past, present and future climate. This means that vegetation has the potential to work as a feedback mechanism to natural climatic variations, but also that man can alter climate by altering the vegetation. It also means that mankind may have influenced climate before we started to use fossil fuel. Consequently, vegetation changes can be used as a means to mitigate climate change locally. / Studiet av paleoklimat är viktigt för att det ger kunskap om hur klimatsystemet fungerar samt för att det sätter nuvarande klimatförändring i ett nödvändigt perspektiv. Genom att studera (för)historiska perioder ökar vi vår kunskap om dessa perioder, men också om vilka processer som har betydelse för klimatets variationer. Denna avhandling behandlar framförallt interaktionen mellan klimat och växtlighet. Förändringar i växtligheten kan påverka klimatet på flera olika sätt. Dessa kan delas in i två huvudgrupper: biogeokemiska och biogeofysikaliska processer. Denna avhandling studerar de biogeofysikaliska effekterna på klimatet i klimatmodeller. Klimatmodeller är ett nödvändigt verktyg för att studera hur klimatet svarar på förändringar i klimatsystemet, samt för att göra förutsägelser om framtidens klimat. De biogeofysikaliska processerna är förknippade med markytans egenskaper. Förändrad växtlighet förändrar markytans albedo (förmågan att reflektera inkommande soltrålning), skrovlighet och förmågan att transportera vatten från marken till atmosfären genom evapotranspiration (summan av avdunstning och transpiration), vilket i sin tur påverkar energiflödena mellan markytan och atmosfären. Dessa förändringar påverkar sedermera klimatet. Det är emellertid inte självklart på vilket sätt; tätare växtlighet (t.ex. skog i stället för äng) ger minskat albedo vilket ger högre temperatur, men också ökad evapotranspiration vilket däremot ger lägre temperatur. Växtlighetsförändringars påverkan på klimatet studeras i denna avhandling i fyra olika (för)historiska perioder: två väldigt kalla perioder utan mänsklig påverkan (ca 44 000 och 21 000 år sedan), en varm period med liten mänsklig påverkan (ca 6 000 år sedan) och en kall period med avsevärd mänsklig påverkan (ca 200 år sedan). I tillägg till det studeras också dagens klimat. Resultaten visar att förändringar i växtlighet lokalt kan ha en signifikant effekt på klimatet. Kombinationen av dessa perioder ger en uppskattning av effekten av både naturlig och antropogen växtlighet i olika klimatsammanhang. Förändrad växtlighet kan ändra temperaturen med 1-3 °C beroende på årstid och område. Responsen är inte densamma överallt utan beror på lokala egenskaper hos markytan. Under vinterhalvåret är oftast albedoeffekten viktigast eftersom skillnaden i albedo mellan skog och öppet landskap då är mycket stor. Under sommarhalvåret är evapotranspirationen oftast viktigast eftersom skillnaden i albedo mellan olika växtlighetstyper då oftast är små. En förutsättning för det är att det finns tillräckligt med vatten tillgängligt för evapotranspiration. I torra områden förändras evapotranspirationen inte särskilt mycket när växtligheten förändras, vilket gör att albedoeffekten dominerar även på sommaren.  Slutsatsen av dessa studier blir att förändrad växtlighet kan ha en betydande effekt på klimatet, jämförbar med den effekt som ökade halter av växthusgaser har i scenarier för framtida klimat. Alltså är det viktigt att ha en korrekt beskrivning av växtligheten i studier av (för)historiskt, nutida och framtida klimat. Det betyder att växtligheten har potentialen att fungera som en återkopplingsmekanism till naturliga klimatvariationer, men också att människan kan påverka klimatet genom att förändra växtligheten. Det betyder också att mänskligheten kan ha påverkat klimatet innan vi började använda fossilt bränsle. Följaktligen kan växtlighetsförändringar användas som ett sätt att lokalt begränsa klimatförändringar. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
3

Implementation of a distributed sediment model in different data availability scenarios.

Bussi, Gianbattista 20 March 2014 (has links)
Soil erosion by water can cause agricultural soil losses, desertification, water pollution, reservoir sedimentation, local excess of erosion (such as bridge scour) or deposition, etc. For this reason, the assessment of soil erosion and sediment transport is a key component of integrated catchment management. One of the most useful and up-to-date tools available to catchment managers for soil erosion and sediment transport assessment is distributed modelling. During the last few decades, many sedimentological distributed models were developed and applied for a wide range of climates and basins. Their main advantage is that they allow spatial interpolation or extrapolation of their results. Nevertheless, their use is still limited by some constraints. One of the most relevant limitations to the use of such models is the lack of recorded sediment transport data to be used for model calibration and validation. It is widely recognised that both sediment discharge series and soil erosion measurements are only available in a few and small- to medium-size experimental catchments. The aim of this dissertation is to investigate the possibility of using reservoir sedimentation data as a source of proxy information for sedimentological model calibration and validation. In order to carry out this task, a distributed sedimentological model called TETIS was tested in set of catchments with different sediment data availability. First of all, the TETIS model, developed over the last years by the research group of hydrological and environmental modelling of the Technical University of Valencia, is described, especially focusing on the new features developed within this dissertation (sedimentological sub-model automatic calibration algorithm, small pond sediment retention module, etc.). Then, the model is applied to three catchments with different sediment data availability. The first case-study is the Goodwin Creek catchment (Mississippi, US), an experimental catchment with high sediment transport data availability. The model performance is evaluated, and some considerations are made on the estimation of the sediment volume deposited into the drainage network at the beginning of a rainstorm. The second case-study is the Rambla del Poyo catchment (Valencia, Spain), a medium size semi-arid catchment draining to a coastal lagoon with severe sedimentation problems. The TETIS sedimentological sub-model is calibrated and validated using check-dam sedimentation volumes as an estimator of the total sediment transport. A detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. A further application was also developed in this catchment in order to investigate the possibility of calibrating and validating both the hydrological and the sediment sub-models by using reservoir sedimentation volumes and employing neither water nor sediment discharge direct records. The third case-study is the Ésera River catchment (Huesca, Spain), a 1,500 km2 Pyrenean catchment drained by a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. The results of this dissertation indicate that TETIS model is a robust tool which provides a reliable reconstruction of the catchment sediment cycle. Its implementation is subject to data availability, both for parameter estimation and for model calibration and validation. Nevertheless, this dissertation proved that sediment records can be replaced by reservoir sedimentation volumes with satisfactory results, taking into account reservoir trap efficiency and sediment dry bulk density. Two modelling approaches were proposed for sediment model implementation, depending on the data availability. These methodologies proved to be consistent and provided a correct estimation of the sediment transport. Nevertheless, further research is needed to address model limitations and to reduce model results uncertainty / Bussi, G. (2014). Implementation of a distributed sediment model in different data availability scenarios [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/36534 / Alfresco
4

High-resolution simulations of two cold palaeo climates in Europe : MIS 3 and LGM

Strandberg, Gustav January 2015 (has links)
The study of past climate is important because it increases our understanding of how the climate system works. Past climate is often reconstructed by using proxies (that is observations of things that tell something about past climate, for example tree rings, pollen in lake sediments and fossils). Model simulations of past climate further increases the knowledge since it has the possibility to gap the space and time between the sparse and scattered proxy observations, since a model simulation gives relatively continuous information about the whole simulated area. Model simulations can also give internally coherent information about parameters that is not easily reconstructed from proxies (for example heat fluxes).  In this thesis two periods in the past are simulated by climate models: the Marine Isotope Stage 3 (MIS 3), 44 000 years ago, and the Last Glacial Maximum (LGM), 21 000 years ago. Both periods are characterised by low temperature, low sea level and low level of carbon dioxide. The topography in northern Europe is dominated by ice sheets covering Iceland, Norway and parts of Sweden at MIS3; and more extensive ice sheets covering Iceland, Scandinavia, the British Isles and Northern Germany at LGM. These periods are firstly simulated by a global climate model. Those simulations are subsequently used in a regional climate model to increase the level of detail over Europe. To make the regional climate model simulation more realistic vegetation simulated by a dynamical vegetation model is used in the regional climate model.   The climate models simulate European climates much colder than today, especially at LGM. The temperature differences ranges from 5 to 45 °C colder than today; the largest differences being at the ice sheets where the perennial ice cover and the high altitude keep temperatures low. Precipitation is reduced with as much as almost 100 % in northern Europe due to reduced evaporation. Precipitation is increased with as much as 100 % in parts of southern Europe due to changes in atmospheric circulation. The simulations are in broad agreement with proxies, although there are differences.  The vegetation model simulates tundra like vegetation (herbs and shrubs) in the ice-free parts of central and southern Europe. The eastern parts of Europe are dominated by needle-leaved trees. The short and cool summers limit vegetation. The simulated vegetation is in broad agreement with reconstructions. Sensitivity studies of vegetation show that changed vegetation can change the monthly mean temperature with 1-3 °C in some seasons and regions. The response depends on regional surface characteristics. Sensitivity studies of ice sheets show that the simulated climate is consistent with the assumptions about the ice sheet extent made in the simulation. The simulated climate is cold enough in northern Europe to support the ice sheet, and warm enough in southern Europe to prevent the ice sheet from expanding in this direction. A removal of the ice sheet would only have an effect on the local scale in the vicinity of the ice sheet, but this experiment did not include changes in the large-scale global atmospheric circulation.  Although the regional climate model simulations are to a large degree depending on the global climate model simulations they provide new information. When comparing proxies with model data or studying local/regional climatic features (such as the interplay between climate and vegetation) high horizontal resolution, as in the regional climate model, is important. / Studiet av klimat i det förgångna är viktigt eftersom det ökar vår förståelse för hur klimatsystemet fungerar. Förgånget klimat rekonstrueras ofta med hjälp av proxies (det vill säga observationer av saker som säger något om klimatet förr i tiden, till exempel trädringar, pollen i sjösediment och fossiler). Modellsimuleringar av förgånget klimat ökar kunskapen ytterligare eftersom det ger en möjlighet att fylla i luckorna, i tid och rum, mellan de glesa och spridda proxy-observationerna, eftersom en modellsimulering ger information om hela det simulerade området. Modellsimuleringar kan också ge information om parametrar som inte så lätt rekonstrueras från proxies (till exempel värmeflöden).   I denna avhandling simuleras med klimatmodeller två perioder i det förgångna: MIS 3 (Marine Isotope Stage 3), för 44 000 år sedan och LGM (Last Glacial Maximum), för 21 000 år sedan. Båda perioderna kännetecknas av låg temperatur, låg havsnivå och låg halt av koldioxid. Topografin i norra Europa domineras av istäcken som täcker Island, Norge och Sverige vid MIS 3; och istäcken över Island, Skandinavien, Brittiska öarna och norra Tyskland vid LGM. Dessa perioder simuleras först av en global klimatmodell. Simuleringarna används senare i en regional klimatmodell för att öka detaljgraden över Europa. För att göra den regionala klimatmodell-simuleringen mer realistisk så används i den regionala klimatmodellen vegetation som är simulerad av en dynamisk vegetationsmodell. Klimatmodellerna simulerar europeiska klimat som är mycket kallare än dagens, särskilt vid LGM. Temperaturdifferensen spänner från 5 till 45 °C kallare än idag; de största skillnaderna är vid istäckena där det ständiga istäcket och den höga altituden håller temperaturen nere. Nederbörden minskar med så mycket som nästan 100 % i norra Europa på grund av minskad avdunstning. Nederbörden ökar med så mycket som 100 % i delar av södra Europa på grund av förändringar i atmosfärens cirkulation. Simuleringarna stämmer i stora drag överens med proxies, även om det finns skillnader.  Vegetationsmodellen simulerar tundralik vegetation (örter och snår) i de isfria delarna av centrala och södra Europa. De östra delarna av Europa domineras av barrträd. De korta och kalla somrarna begränsar vegetationen. Den simulerade vegetationen stämmer i stora drag överens med rekonstruktionerna. Känslighetsstudier av vegetationen visar att förändrad vegetation kan förändra månadsmedeltemperaturen med 1-3 °C i vissa regioner och under vissa säsonger. Responsen beror på regionala egenskaper vid markytan. Känslighetsstudier av istäckena visar att det simulerade klimatet är förenligt med de antaganden av istäckenas utbredning som görs i simuleringen. Det simulerade klimatet är tillräckligt kallt i norra Europa för att göra ett istäcke möjligt, och tillräckligt varmt i södra Europa för att hindra istäcket från att växa i den riktningen. Om istäcket skulle tas bort skulle det bara ha en effekt på lokal skala i närheten av istäcket, men detta experiment innefattade inte förändringar i atmosfärens cirkulation. Även om de regionala klimatmodell-simuleringarna till stor del beror på de globala klimatmodell-simuleringarna så ger de ny information. Vid jämförelser av proxies och modelldata eller studier av lokala/regionala egenskaper hos klimatet (som växelverkan mellan klimat och vegetation) så är hög horisontell upplösning, som i en regional klimatmodell, viktigt.
5

Towards a flexible statistical modelling by latent factors for evaluation of simulated responses to climate forcings

Fetisova, Ekaterina January 2017 (has links)
In this thesis, using the principles of confirmatory factor analysis (CFA) and the cause-effect concept associated with structural equation modelling (SEM), a new flexible statistical framework for evaluation of climate model simulations against observational data is suggested. The design of the framework also makes it possible to investigate the magnitude of the influence of different forcings on the temperature as well as to investigate a general causal latent structure of temperature data. In terms of the questions of interest, the framework suggested here can be viewed as a natural extension of the statistical approach of 'optimal fingerprinting', employed in many Detection and Attribution (D&amp;A) studies. Its flexibility means that it can be applied under different circumstances concerning such aspects as the availability of simulated data, the number of forcings in question, the climate-relevant properties of these forcings, and the properties of the climate model under study, in particular, those concerning the reconstructions of forcings and their implementation. It should also be added that although the framework involves the near-surface temperature as a climate variable of interest and focuses on the time period covering approximately the last millennium prior to the industrialisation period, the statistical models, included in the framework, can in principle be generalised to any period in the geological past as soon as simulations and proxy data on any continuous climate variable are available.  Within the confines of this thesis, performance of some CFA- and SEM-models is evaluated in pseudo-proxy experiments, in which the true unobservable temperature series is replaced by temperature data from a selected climate model simulation. The results indicated that depending on the climate model and the region under consideration, the underlying latent structure of temperature data can be of varying complexity, thereby rendering our statistical framework, serving as a basis for a wide range of CFA- and SEM-models, a powerful and flexible tool. Thanks to these properties, its application ultimately may contribute to an increased confidence in the conclusions about the ability of the climate model in question to simulate observed climate changes. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 3: Manuscript.</p>

Page generated in 0.0752 seconds