• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 17
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polyoxometalate/Carbon Electrodes for Electrochemical Capacitors

Bajwa, Gurvinder 20 November 2012 (has links)
Carbon materials are commonly studied as the electrode material for electrochemical double layer capacitance (EDLC) due to their high surface area. The present work aimed to leverage both EDLC and pseudocapacitance through chemical modification of multi-wall carbon nanotubes (MWCNTs) and onion-like carbon (OLC) with polyoxometalates (POMs) to further enhance the performance of these electrodes. Layer-by-layer (LbL) deposition of two commercially available POMs (PMo12O403- and SiMo12O404-) and three synthesized POMs (PMo11VO404-, PMo10V2O405- and PMo9V3O406-) has been investigated. A single-layer of POMs increased the area specific capacitance by approximately three-times, while superimposing of these POMs into two-layer coatings increased the capacitance by approximately five-times. The morphology and composition of these composite materials were investigated using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS).
2

Polyoxometalate/Carbon Electrodes for Electrochemical Capacitors

Bajwa, Gurvinder 20 November 2012 (has links)
Carbon materials are commonly studied as the electrode material for electrochemical double layer capacitance (EDLC) due to their high surface area. The present work aimed to leverage both EDLC and pseudocapacitance through chemical modification of multi-wall carbon nanotubes (MWCNTs) and onion-like carbon (OLC) with polyoxometalates (POMs) to further enhance the performance of these electrodes. Layer-by-layer (LbL) deposition of two commercially available POMs (PMo12O403- and SiMo12O404-) and three synthesized POMs (PMo11VO404-, PMo10V2O405- and PMo9V3O406-) has been investigated. A single-layer of POMs increased the area specific capacitance by approximately three-times, while superimposing of these POMs into two-layer coatings increased the capacitance by approximately five-times. The morphology and composition of these composite materials were investigated using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS).
3

Caractérisation de la pseudocapacitance d'électrodes de RuO₂ dans un liquide ionique échangeur de protons

Pont, Anne-Laure January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
4

Development of Electro-active Graphene Nanoplatelets and Composites for Application as Electrodes within Supercapacitors

Davies, Aaron 27 January 2012 (has links)
The mounting concern for renewable energies from ecologically conscious alternatives is growing in parallel with the demand for portable energy storage devices, fuelling research in the fields of electrochemical energy storage technologies. The supercapacitor, also known as electrochemical capacitor, is an energy storage device possessing a near infinite life-cycle and high power density recognized to store energy in an electrostatic double-layer, or through a pseudocapacitance mechanism as a result of an applied potential. The power density of supercapacitors far exceeds that of batteries with an ability to charge and discharge stored energy within seconds. Supercapacitors compliment this characteristic very well with a cycle life in excess of 106 cycles of deep discharge within a wide operational temperature range, and generally require no further maintenance upon integration. Conscientious of environmental standards, these devices are also recyclable. Electrochemical capacitors are currently a promising candidate to assist in addressing energy storage concerns, particularly in hybridized energy storage systems where batteries and supercapacitors compliment each other’s strengths; however specific challenges must be addressed to realize their potential. In order to further build upon the range of supercapacitors for future market applications, advancements made in nanomaterial research and design are expected to continue the materials development trend with a goal to improve the energy density through the development of a cost-efficient and correspondingly plentiful material. However, it is important to note that the characteristic power performance and exceptional life-cycle should be preserved alongside these efforts to maintain their niche as a power device, and not simply develop an alternative to the average battery. It is with this clear objective that this thesis presents research on an emerging carbon material derived from an abundant precursor, where the investigations focus on its potential to achieve high energy and power density, stability and integration with other electroactive materials. Activated carbons have been the dominant carbon material used in electric double-layer capacitors since their inception in the early 1970s. Despite a wide range of carbon precursors and activation methods available for the generation of high surface area carbons, difficulties remain in controlling the pore size distribution, pore shape and an interconnected pore structure to achieve a high energy density. These factors have restricted the market growth for supercapacitors in terms of the price per unit of energy storage. Activation procedures and subsequent processes for these materials can also be energy intensive (i.e. high temperatures) or environmentally unfriendly, thus the challenge remains in fabricating an inexpensive high surface-area electroactive material with favourable physical properties from a source available in abundance. Double-layer capacitive materials researched to replace active carbons generally require properties that include: high, accessible surface-area; good electrical conductivity; a pore size distribution that includes mesopore and micropore; structural stability; and possibly functional groups that lend to energy storage through pseudocapacitive mechanisms. Templated, fibrous and aerogel carbons offer an alternative to activated carbons; however the drawbacks to these materials can include difficult preparation procedures or deficient physical properties with respect to those listed above. In recent years nanostructured carbon materials possessing favourable properties have also contributed to the field. Graphene nanoplatelet (GNP) and carbon nanotube (CNT) are nanostructured materials that are being progressively explored for suitable development as supercapacitor electrodes. As carbon lattice structured materials either in the form of a 2-dimensional sheet or rolled into a cylinder both of these materials possess unique properties desirable in for electrode development. In the proceeding report, GNPs are investigated as a primary material for the synthesis of electrodes in both a pure and composite form. Three projects are presented herein that emphasize the suitability of GNP as a singular carbon electrode material as well as a structural substrate for additional electroactive materials. Investigation in these projects focuses on the electrochemical activity of the materials for supercapacitor devices, and elucidation of the physical factors which contribute towards the observed capacitance. An initial study of the GNPs investigates their distinct capacitive ability as an electric double-layer material for thin-film applications. The high electrically conductivity and sheet-like structure of GNPs supported the fabrication of flexible and transparent films with a thickness ranging from 25 to 100 nm. The thinnest film fabricated (25 nm) yielded a high specific capacitance from preliminary evaluation with a notable high energy and power density. Furthermore, fast charging capabilities were observed from the GNP thin film electrodes. The second study examines the use of CNT entanglements dispersed between GNP to increase the active surface area and reduce contact resistances with thin-film electrodes. Through the use MWNT/GNP and SWNT/GNP composites it was determined that tube aspect ratio influences the resulting capacitive performance, with the formation of micropores in SWNT/GNP yielding favourable results as a composite EDLC. The third study utilizes electrically conducting polypyrrole (PPy) deposited onto a GNP film through pulse electrodeposition for use as a supercapacitor electrode. Total pulse deposition times were evaluated in terms of their corresponding improvements to the specific capacitance, where an optimal deposition time was discovered. A significant increase to the total specific capacitance was observed through the integration PPy, with the majority charge storage being developed via psuedocapacitive redox mechanisms. A summary of the studies presented here centers on the development of GNP electrodes for application in high power supercapacitor devices. The potential use for GNP in both pure and composite electrode films is explored for electrochemical activity and capacitive capabilities, with corresponding physical characterization techniques performed to examine influential factors which contribute to the final results. The work emphasizes the suitability of GNP material for future investigations into their application as carbon or carbon composite electrodes in supercapacitor devices.
5

Development of Electro-active Graphene Nanoplatelets and Composites for Application as Electrodes within Supercapacitors

Davies, Aaron 27 January 2012 (has links)
The mounting concern for renewable energies from ecologically conscious alternatives is growing in parallel with the demand for portable energy storage devices, fuelling research in the fields of electrochemical energy storage technologies. The supercapacitor, also known as electrochemical capacitor, is an energy storage device possessing a near infinite life-cycle and high power density recognized to store energy in an electrostatic double-layer, or through a pseudocapacitance mechanism as a result of an applied potential. The power density of supercapacitors far exceeds that of batteries with an ability to charge and discharge stored energy within seconds. Supercapacitors compliment this characteristic very well with a cycle life in excess of 106 cycles of deep discharge within a wide operational temperature range, and generally require no further maintenance upon integration. Conscientious of environmental standards, these devices are also recyclable. Electrochemical capacitors are currently a promising candidate to assist in addressing energy storage concerns, particularly in hybridized energy storage systems where batteries and supercapacitors compliment each other’s strengths; however specific challenges must be addressed to realize their potential. In order to further build upon the range of supercapacitors for future market applications, advancements made in nanomaterial research and design are expected to continue the materials development trend with a goal to improve the energy density through the development of a cost-efficient and correspondingly plentiful material. However, it is important to note that the characteristic power performance and exceptional life-cycle should be preserved alongside these efforts to maintain their niche as a power device, and not simply develop an alternative to the average battery. It is with this clear objective that this thesis presents research on an emerging carbon material derived from an abundant precursor, where the investigations focus on its potential to achieve high energy and power density, stability and integration with other electroactive materials. Activated carbons have been the dominant carbon material used in electric double-layer capacitors since their inception in the early 1970s. Despite a wide range of carbon precursors and activation methods available for the generation of high surface area carbons, difficulties remain in controlling the pore size distribution, pore shape and an interconnected pore structure to achieve a high energy density. These factors have restricted the market growth for supercapacitors in terms of the price per unit of energy storage. Activation procedures and subsequent processes for these materials can also be energy intensive (i.e. high temperatures) or environmentally unfriendly, thus the challenge remains in fabricating an inexpensive high surface-area electroactive material with favourable physical properties from a source available in abundance. Double-layer capacitive materials researched to replace active carbons generally require properties that include: high, accessible surface-area; good electrical conductivity; a pore size distribution that includes mesopore and micropore; structural stability; and possibly functional groups that lend to energy storage through pseudocapacitive mechanisms. Templated, fibrous and aerogel carbons offer an alternative to activated carbons; however the drawbacks to these materials can include difficult preparation procedures or deficient physical properties with respect to those listed above. In recent years nanostructured carbon materials possessing favourable properties have also contributed to the field. Graphene nanoplatelet (GNP) and carbon nanotube (CNT) are nanostructured materials that are being progressively explored for suitable development as supercapacitor electrodes. As carbon lattice structured materials either in the form of a 2-dimensional sheet or rolled into a cylinder both of these materials possess unique properties desirable in for electrode development. In the proceeding report, GNPs are investigated as a primary material for the synthesis of electrodes in both a pure and composite form. Three projects are presented herein that emphasize the suitability of GNP as a singular carbon electrode material as well as a structural substrate for additional electroactive materials. Investigation in these projects focuses on the electrochemical activity of the materials for supercapacitor devices, and elucidation of the physical factors which contribute towards the observed capacitance. An initial study of the GNPs investigates their distinct capacitive ability as an electric double-layer material for thin-film applications. The high electrically conductivity and sheet-like structure of GNPs supported the fabrication of flexible and transparent films with a thickness ranging from 25 to 100 nm. The thinnest film fabricated (25 nm) yielded a high specific capacitance from preliminary evaluation with a notable high energy and power density. Furthermore, fast charging capabilities were observed from the GNP thin film electrodes. The second study examines the use of CNT entanglements dispersed between GNP to increase the active surface area and reduce contact resistances with thin-film electrodes. Through the use MWNT/GNP and SWNT/GNP composites it was determined that tube aspect ratio influences the resulting capacitive performance, with the formation of micropores in SWNT/GNP yielding favourable results as a composite EDLC. The third study utilizes electrically conducting polypyrrole (PPy) deposited onto a GNP film through pulse electrodeposition for use as a supercapacitor electrode. Total pulse deposition times were evaluated in terms of their corresponding improvements to the specific capacitance, where an optimal deposition time was discovered. A significant increase to the total specific capacitance was observed through the integration PPy, with the majority charge storage being developed via psuedocapacitive redox mechanisms. A summary of the studies presented here centers on the development of GNP electrodes for application in high power supercapacitor devices. The potential use for GNP in both pure and composite electrode films is explored for electrochemical activity and capacitive capabilities, with corresponding physical characterization techniques performed to examine influential factors which contribute to the final results. The work emphasizes the suitability of GNP material for future investigations into their application as carbon or carbon composite electrodes in supercapacitor devices.
6

SYNTHESIS, CHARACTERIZATION AND PSEUDO-CAPACITIVE PERFORMANCE OF MANGANESE OXIDE NANOSTRUCTURES

Tsai, Chung-Ying 01 December 2012 (has links)
In this research, manganese oxide based nanoparticles were synthesized by sol-gel process. Methanol, ethanol, and propanol were used as alternative solvents during sol-gel process with manganese acetate as precursor for the preparation of pristine manganese oxide. Hybrid manganese oxide modified by additions of carbon nanotubes was further prepared. The effects of different solutions and heat treatment temperatures on the morphology, physical characteristics, and electrochemical properties of the manganese oxide based materials were investigated. Particle size of pristine manganese oxide samples prepared from methanol, ethanol, and propanol were compared by SEM and TEM image analysis. Smallest particle size was observed for manganese oxide prepared from propanol, with diameters range from 16 nm to 50nm. XRD results showed that the as-prepared manganese oxide based samples treated at calcination temperature of 300ºC and above were composed of Mn2O3 as dominant phase, with Mn3O4 as minor phase. Specific capacitance of manganese oxide prepared from methanol, ethanol, and propanol at scan rate of 10 mV/s measured using two electrode systems were 88.3, 66.0, and 104.8 F/g, respectively and that for the hybrid sample was 140.5 F/g. Results from electrochemical impedance spectroscopy (EIS) also showed superior electrochemical properties of the hybrid sample over pristine manganese oxide samples. It is evident that the addition of carbon nanotubes not only improved the specific capacitance but also the overall electrochemical properties of the manganese oxide supercapacitor.
7

Investigations of interlayer chemistry in layered metal oxides for energy conversion and storage

Thenuwara, Akila Chathuranga January 2018 (has links)
The overall goal of this dissertation research was to design, tailor and understand layered metal oxides in the context of electrocatalytic energy conversion and storage processes. To accomplish this goal the thesis research combined electrochemistry, state-of-the-art structural characterization and theoretical calculations. The hypothesis examined in this dissertation is that incorporation of metal atoms or metal ions into the sheets and/or interlayer region of the layered materials will enhance the properties of selected 2D materials for chemistry relevant to electrochemical energy conversion (i.e. electrochemical water splitting catalysis; H2O ® H2 + 1/2O2) and energy storage (i.e., as pseudocapacitors). The primary 2D layered materials investigated in this thesis research were birnessite (nominally MnO2) and Fe:Ni double hydroxide materials. Metals (cations) used to modify the geometric and electronic structure of the layered materials include Cu, Ni, and Co. Perhaps the result with broadest impact to result from the integration of experimental and theoretical studies in the thesis research was that the confinement of solvated redox active metals within the interlayer region of 2D layered materials can be used to facilitate their electron transfer reaction rates (relative to the respective unconfined metal) and energy related electrochemistry. This new paradigm for electron transfer has implications for the development of novel electrocatalytic materials for energy conversion. Research showed that the electrocatalytic activity of birnessite toward water oxidation (2H2O® 4H+ + 4e- + O2) was increased by intercalating zero valent copper into the interlayer region of the layered manganese oxide. Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at a current density of 10 mA cm 2) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA cm-2) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. It was experimentally shown that the oxygen evolution reaction (OER; water oxidation) catalysis of redox active transition metal ions (Ni2+ and Co2+) can be enhanced by individually confining them in the interlayer region of birnessite. It was demonstrated that the metal confined electrocatalyst reached a current density of 10 mA cm−2 at much lower overpotentials than pure Ni and Co oxides, and pristine birnessite. For example, with interlayer nickel and cobalt, overpotentials of 400 and 360 mV, respectively, were achieved for the OER. Molecular dynamics (MD) simulations suggested that electron transfer reaction rates relevant to OER and involving Ni or Co were enhanced when the metal cations were confined in the interlayer of birnessite. The strategy of metal confinement, which was successfully applied to layered manganese oxide to improve OER activity was extended to Ni-Fe based layered double hydroxide. It was demonstrated that the electrocatalytic activity of NiFe layered double hydroxides (NiFe LDHs) for the OER could be significantly enhanced by systematic cobalt incorporation using coprecipitation and/or intercalation. Electrochemical measurements showed that cobalt modified NiFe LDH possessed an enhanced activity for the OER relative to pristine NiFe LDH. The cobalt doped NiFe LDH exhibited overpotentials in the range of 290−322 mV (at 10 mA cm−2), depending on the degree of cobalt content. The cobalt intercalated NiFe LDH achieved a current density of 10 mA cm−2 at a much lower overpotential of ∼265 mV (compared to 310 mV for NiFe LDH). With regard to energy storage, it was shown that the pseudocapacitive charge storage in layered manganese oxide was a sensitive function of interlayer composition and distance. Even though pristine layered manganese oxide shows a 7 Å interlayer spacing, the interlayer engineering via metal (Mg2+) intercalation and thermal annealing led to layered manganese oxide materials with variable interlayer spacings of 10 and 5.6 Å respectively. The interlayer expanded layered manganese oxide (10 Å interlayer spacing) exhibited an improved specific capacitance of 380 Fg-1, in comparison to synthetic Na-birnessite (specific capacitance of 200 F g-1). Dehydrated Na-birnessite (~5.6 Å spacing) produced by annealing to expel interlayer water, showed the lowest specific capacitance of 50 Fg-1. Experimental results showed that interlayer expanded manganese oxide (with intercalated Mg2+) was unstable if exposed to a solution containing only Na+ cation electrolyte. In this circumstance, the interlayer distance decreased from the expanded 10 Å value back to an interlayer distance of 7 Å and a specific capacitance of ~200 F g-1; values associated with synthetic Na-birnessite. Finally, a highly active alkaline medium hydrogen evolving electrocatalyst based on earth abundant materials (Co, Mo and P) was developed and the catalyst exhibited a ~0 V onset for the hydrogen evolution reaction (HER; 2H+ + 2e- ® H2). This value was comparable to that of the precious metal platinum. The Co-Mo-P catalyst was prepared by room temperature electrodeposition and it exhibited an overpotential of ~ 25-30 mV for HER at a geometrical current density of 10 mA cm-2 in an alkaline medium. A DFT theoretical investigation revealed that a Co-Mo center acts as the water-dissociation site enhancing the alkaline medium HER. / Chemistry
8

Étude des propriétés de liquides ioniques protiques en tant qu'électrolytes pour des supercapacités à base de dioxyde de ruthénium

Mayrand-Provencher, Laurence 03 1900 (has links)
Ce mémoire portant sur le développement de liquides ioniques protiques à l'état liquide à température ambiante en tant qu'électrolytes pour des supercapacités faradiques à base de dioxyde de ruthénium est divisé en trois études distinctes. La première permet d'évaluer quelles propriétés de ces sels fondus doivent être optimisées pour cette application en utilisant les données recueillies avec une série de nouveaux liquides ioniques protiques constitués de l'acide trifluoroacétique et différentes bases hétérocycliques azotées. La seconde discute de l'effet d'impuretés colorées sur les propriétés des liquides ioniques ainsi que sur des aspects pratiques devant être pris en considération lors des synthèses. La troisième traite d'importantes relations structure–propriétés pour une série de liquides ioniques protiques ayant des cations du type pyridinium et différents anions. Dans leur ensemble, les travaux présentés devraient permettre une recherche plus efficace de liquides ioniques avec des propriétés désirables en vue d'application comme électrolyte dans le futur. / This thesis on the development of room temperature protic ionic liquids as electrolytes in ruthenium-dioxide based faradaic superpacitors consists of three separate studies. The first one establishes which properties of molten salts need to be optimized for this application by using the data obtained from the analysis of a series of protic ionic liquids composed of trifluoroacetic acid and N-heterocyclic bases. The second study elaborates on the effect of colored impurities on the properties of ionic liquids and also reports practical aspects which need to be accounted for during their synthesis. The third study focuses on important structure–property relationships for a series of protic ionic liquids with pyridinium cations and various anions. Altogether, the results presented in here should allow a more efficient design of ionic liquids with desirable properties for application as electrolytes in the future.
9

Étude des propriétés de liquides ioniques protiques en tant qu'électrolytes pour des supercapacités à base de dioxyde de ruthénium

Mayrand-Provencher, Laurence 03 1900 (has links)
Ce mémoire portant sur le développement de liquides ioniques protiques à l'état liquide à température ambiante en tant qu'électrolytes pour des supercapacités faradiques à base de dioxyde de ruthénium est divisé en trois études distinctes. La première permet d'évaluer quelles propriétés de ces sels fondus doivent être optimisées pour cette application en utilisant les données recueillies avec une série de nouveaux liquides ioniques protiques constitués de l'acide trifluoroacétique et différentes bases hétérocycliques azotées. La seconde discute de l'effet d'impuretés colorées sur les propriétés des liquides ioniques ainsi que sur des aspects pratiques devant être pris en considération lors des synthèses. La troisième traite d'importantes relations structure–propriétés pour une série de liquides ioniques protiques ayant des cations du type pyridinium et différents anions. Dans leur ensemble, les travaux présentés devraient permettre une recherche plus efficace de liquides ioniques avec des propriétés désirables en vue d'application comme électrolyte dans le futur. / This thesis on the development of room temperature protic ionic liquids as electrolytes in ruthenium-dioxide based faradaic superpacitors consists of three separate studies. The first one establishes which properties of molten salts need to be optimized for this application by using the data obtained from the analysis of a series of protic ionic liquids composed of trifluoroacetic acid and N-heterocyclic bases. The second study elaborates on the effect of colored impurities on the properties of ionic liquids and also reports practical aspects which need to be accounted for during their synthesis. The third study focuses on important structure–property relationships for a series of protic ionic liquids with pyridinium cations and various anions. Altogether, the results presented in here should allow a more efficient design of ionic liquids with desirable properties for application as electrolytes in the future.
10

Surface Modifications of Nanocarbon Materials for Electrochemical Capacitors

Akter, Tahmina 14 December 2010 (has links)
Multi-walled carbon nanotubes (MWCNTs) were successfully coated with two different pseudocapacitive polyoxometalates (POMs) (SiMo12O40-4 (SiMo12) and PMo12O40-3 (PMo12)) via “Layer-by-Layer” deposition. Even with merely a “single-layer” of POM, the modified nanotubes exhibited more than 2X increase in capacitance compared with that of bare nanotubes. To further improve their electrochemical performances, the deposition sequence of the POM layers was adjusted to form “alternate layer” coating to modify MWCNT. A synergistic effect on the capacitance and kinetics was observed with the alternate layer coatings. X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) also proved the successful coating of POMs on MWCNTs. The potential-pH relationship provided important insights in terms of the deposition mechanism and suggested that the bottom layer close to the electrode substrate was the dominating layer in alternate layer coated MWCNT electrodes.

Page generated in 0.0705 seconds