• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamically Driven (Reversible) End-Capping of Pseudorotaxanes to Produce Rotaxanes

Fletcher, Amy L. 15 January 2004 (has links)
Rotaxanes can be synthesized using a thermodynamically driven approach of self-assembly. The thermodynamically driven approach is an efficient method to provide a better controlled synthesis of specific structures. This synthetic approach takes advantage of a labile bond between the guest molecule and the end stopper group. The reversibility of this bond allows for threading by the host molecule via chemical equilibrium. Intramolecular interactions such as hydrogen bonding and π-π stacking facilitate threading to form the pseudorotaxane which is endcapped to form the thermodynamically stable rotaxane. In this work, the synthesis and characterization of rotaxanes using a thermodynamically driven approach is reported. New OH-functionalized secondary dibenzyl ammonium hexafluorophosphate and tetrafluoroborate salts were synthesized and complexed with dibenzo-24-crown-8. The complexation between the salts and dibenzo-24-crown-8 was observed using 1D and 2D ¹H NMR spectroscopy. An association constant of 110 M⁻¹ was determined by integration for the pseudorotaxane from the ammonium hexafluorophospate salt and dibenzo-24-crown-8. The new guest species were endcapped in situ as trityl ethers to form new thermodynamically stable rotaxanes. Further work to pursue would include synthesis of rotaxanes using functionalized crown ethers for polymerization to make polyrotaxanes and synthesis of self-assembled polymers using this synthetic method. / Master of Science
2

Quantification of Supramolecular Complexes Involving Charged Species in Non-Aqueous Solvents: Theory and Application

Jones, Jason William 28 May 2004 (has links)
We report for the first time a broad equilibrium model describing the complexation of ionic species in non-aqueous media that explicitly includes ion pairing for one of the components and that relies upon activities rather than molar concentrations. This model directly contradicts existing commonplace equilibrium treatments, which were shown to be incomplete, often invalid, and misleading. Experimental validation of our model was achieved through studies of pseudorotaxane formation between dibenzylammonium salts (DBAm-X) and dibenzo-24-crown-8 (DB24C8) in CDCl3:CD3CN (3:2). In that particular case, we showed that fluctuations in the apparent Ka,exp values as usually reported are attributable to ion pairing, with a dissociation constant Kipd, and that the constant Kassoc for pseudorotaxane complexation is independent of the counterion, a result of the complex existing in solution as a free cation. In accord with this model, we further described a straightforward and simple method to increase the extent of complexation by using either a ditopic cation and anion host, or adding to the charged host/guest solution a molecularly separate host capable of complexing the dissociated counterion. Also in accord with this model, we investigated the influence of the solvent¡¯s dielectric constant on Kipd and Kassoc. On the basis of competing condensation reactions between amines and ketones which were shown to occur within the timescale of host/guest recognition, we also challenged the commonly employed use of acetone in similar complexation studies involving 2o ammonium ions. Because a major goal of this work was to ultimately increase binding efficiency and selectivity, we explored new methods to drive complexation in related pseudorotaxane systems. We noted that addition of di- or tri-topic hydrogen bond accepting anions to solutions of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 or bis(5-carboxy-1,3-phenylene)-32-crown-10 and paraquat di(hexafluorophosphate) served to significantly enhance host/guest interaction. The addition of Et4N+TFA- to an acetone solution of diacid crown and paraquat 2PF6 effectively boosted Ka,exp 40-fold, as estimated by 1H NMR studies. Similar increases in the apparent Ka,exp were observed upon the addition of n-Bu4N+OTs-. Evidenced by crystal structures, the increase in association resulted from chelation of the OH moieties of the crown by the di- or tri-topic anions, forming supramolecular bicyclic macrocycles (pseudocryptands) and stabilizing the complex in a cooperative manner. Significantly, Ka,exp of one of the pseudocryptands was shown to equal that determined in the corresponding cryptand complex. / Ph. D.
3

I. Functionalization and Investigation of Highly Efficient Hosts for Use in Macromolecular Self-Assemblies and II. The Design and Synthesis of ROMP Imidazolium Systems for Use as Mechanical Actuators

Price, Terry Leon Jr. 09 June 2016 (has links)
Recent advancements in supramolecular chemistry have given a wealth of strongly binding host-guest combinations. However, the deployment of these systems into meaningful constructs has been hindered due to difficulty of synthesis or to the lack of functionality in one or both components. Systems caught in this trap were the pyridyl cryptands of dibenzo-30-crown-10 and bis(m-phenylene)-32-crown-10 paired with paraquat. Exceptionally high association constants in the range of 105 to 106 have been observed for these systems, but their applications have been hindered. Easing the implementation of pyridyl cryptands based on dibenzo-30-crown-10 was made a priority. An efficient method for the synthesis of pyridyl cryptands based on dibenzo-30-crown-10 and bis(m-phenylene)-32-crown-10 made use of the salt pyridinium bis(trifluoromethane)sulfonamide (TFSI) as a template. Optimization of the pyridinium TFSI template allowed for cyclization yields as high as 89%, as well as without the use of a syringe pump. Addressing the concern of functionality, for pyridyl cryptands, chelidamic acid was targeted as a way to build in functionality. Using a chelidamic isopropyl ester, 20 new chelidamic precursors of varying functionality were synthesized. The chelidamic derivatives fell into six groups: potential covalent monomers, initiators, chain terminators, leaving groups, aryl halides and host-guest monomers. In an attempt to boost the association constants of pyridyl cryptands based on dibenzo-30-crown-10 with paraquat, alterations to the paraquat guest were explored. It was found that the association constants could be increased by nearly an order of magnitude. Tweaks to the paraquat included changing the counterion to TFSI, methyl groups to benzyl and allowing for access to more nonpolar solvents that were previously inaccessible, such as solvent change from DCM to acetone. Two new biscryptands and two new bisparaquat TFSI monomers were synthesized. Using these monomers supramolecular polymers were synthesized and characterized. Fibers of these polymers drawn from concentrated solutions were found to be flexible and one such polymer solution was found to have an upper log / log specific viscosity–concentration slope of 3.55, which is the theoretical maximum. Additionally, a biscryptand was used to produce a chain extended polymer. Using a fundamental understanding of host-guest chemistry, work was conducted on the synthesis of norbornene monomers and polymers with pendant imidazolium tethered by ethyleneoxy linkages to aid in the stabilization of the imidazolium cation. Through the use of ethyleneoxy linkages, the free anion content and conductivity was increased. Imidazolium monomer and polymer conductivities ranged up to nearly 10-4 S/cm. Furthermore, it was determined that as long as the ethyleneoxy spacer between the norbornene and imidazolium was two units or greater, similar properties were obtained for both the monomer and corresponding polymer. Expanding the work further, the imidazolium monomers were incorporated as a soft segment into a triblock copolymer to produce a single direction mechanical actuator. / Ph. D.
4

Dibenzo-30-crown-10: Synthetic optimization and studies of the binding conformation

Wessels, Hanlie R. 07 May 2018 (has links)
Dibenzo-30-crown-10 (DB30C10) is one of the first-generation macrocyclic hosts discovered by Pedersen. Crown ethers originally attracted attention due to their ability to encapsulate metal cations and render them soluble in organic solvents. These studies helped to launch host-guest chemistry as a discipline within supramolecular chemistry. Crown ethers form complex molecules containing organic cations and neutral organic molecules. Additionally, they form components in supramolecular architectures such as catenanes, rotaxanes, and supramolecular polymers. They have been used as selective hosts in diverse applications such as wastewater treatment, switchable catalysis, therapeutic agents, sensors, molecular machines, and stimuli responsive materials "smart polymers". Despite the vigorous research activity in the field, DB30C10 has received surprisingly little attention. DB30C10 was reported in 1967 and has been commercially available since 1992; however, it has been mostly overlooked as a host in favour of smaller crown ethers such as DB24C8, B15C5, 18C6 and 15C5. Herein we present an improved synthetic route that improves the yield of the cyclization step in the synthesis of DB30C10 from 25% to 88% enabling us to prepare multiple grams of the material without the use of pseudo high-dilution techniques. The same methodology was applied to three other crown ethers with similar improvement in yield. Four new rotaxanes based on the DB30C10-paraquat binding motif were used to investigate the binding conformation of DB30C10 and paraquat. The new rotaxanes were characterized by 1H, 13C and 2D-NOESY NMR, mp, and HRMS. A single crystal X-ray structure of one of the [2]rotaxanes was obtained. To our knowledge, this is the first crystal structure of a rotaxane based on this particular binding motif. This result illustrated that DB30C10 was a suitable host for the construction of supramolecular systems and polymers. Our eventual goal is to use DB30C10 in the construction of supramolecular polymers with novel topologies. Therefore, the relative threading efficiency of DB30C10 in solution had to be determined. A series of segmented polyurethane poly(pseudorotaxanes) with paraquats in the backbone were synthesized with different crown ether or cyptand hosts. The threading efficiency was determined by 1H NMR. / Ph. D.
5

Neuartige photoschaltbare Makrocyclen und Pseudorotaxane auf Acridanbasis

Orda-Zgadzaj, Marzena Maria 03 November 2005 (has links)
In der vorliegender Arbeit wurde die photochemische Bildung der Acridiniumionen in einem Pseudorotaxan und die daraus resultierende Transformation der Lichtenergie in die Translationsenergie, was als erster Schritt in Richtung der molekularen Maschinen angesehen wird, untersucht. 9-Phenyl-9-hydroxyacridan unterscheidet sich in ihrer Lichtabsorption, Molekülgeometrie und Elektronen- Donatorstärke gravierend von den korrespondierenden Acridiniumionen. Die Änderung der elektronischen Eigenschaften bei der Umwandlung der Acridane- in die Acridinium ist daher potentiell nutzbar, um nichtkovalente Bindungskräfte in supramolekularen Einheiten zu beeinflussen. Ziel der vorliegenden Arbeit war die Erschließung eines neuen Zugangs zu linearen und makrocyclischen Systemen, die als Strukturelement eine Acridaneinheit besitzen. Die Makrocyclen mit elektronenreichen 9-Phenylacridanbausteinen wurden unter high-dilution-Bedingungen erhalten. Bei der Photoanregung wurden unter Abspaltung von Methoxidionen die elektronenarmen korrespondierenden Acridiniummakrocyclen gebildet. Die Photoheterolyse findet in alkoholischen Lösungsmitteln, Acetonitril und in Toluol statt. Die Lebensdauer des Acridiniummethoxids kann durch Mischen des Alkohols mit dem Acetonitril gesteuert werden. Auch nach zehn Schaltcyclen ist keine Ermüdung des Systems festzustellen. Als molekulare Fäden kommen für die neuen Makrocyclen entweder Moleküle mit elektronenarmen Erkennungstationen für die Acridanverbindungen oder elektronenreiche Erkennungsstationen für die Acridiniumringe in Frage. Es wurden zahlreiche Untersuchungen zur Komplexierung der neuen Makrocyclen mit Hilfe der spektroskopischen Titrationen durchgeführt. Dabei wurde das photoschaltbare Pseudorotaxan gefunden. Im Rahmen dieser Arbeit wurde ein neuer langlebiger Photoschalter optimiert und mit Hilfe der 1H-NMR-Spektroskopie wurde die durch Licht injizierte molekulare Bewegung beobachtet. / For this work we have examined the photolytic formation of acridinium ion within pseudorotaxanes and the resulting transformation of light energy into translational movement. This can be regarded as the first step towards (creating a) molecular machine. 9-phenyl-9-methoxyacridane distinguishes itself from its corresponding acridinium ions in terms of light absorption, shape, and electronic donor strength. The acridane can be regarded as candidates for photoswitching supramolecular units, because they can be transformed into positively charged acridinium ions. These ions generate an electron acceptor from an electron donor. The object of the following thesis is the development of a new synthetic approach to linear or makrocyclic systems, which contain acridane as a structural element. Macrocycles with electron-rich 9-phenyl-9-methoxyacridan units were prepared under high dilution conditions. The acridinium macrocycles are generated by photoheterolysis of this methoxy derivative, which has a thermal response to acridane macro cycles, thus closing the switching cycle. Heterolytic photodissociation occurs in alcohols, acetonitrile and toluene. Mixing alcohol with acentonitril can control the lifespan of the acridinium methoxide. Even after 10 switching cycles the system seemed unaffected. The molecular thread and macrocycles must be complementary in that they can interact by attracting forces, through generating an electron acceptor from an electron donor. The complex formation of acridan macrocycles with electron acceptor molecular thread was studied using spectrophotometric titration. As a result, photoswitchable pseudorotaxane was formed between acridan crown ethers and (2,2-bipyridine) molecular thread. In the context of this research, we have found that such a transformation is possible. A new, durable photoswitch has been developed, and using the 1H-NMR-spectroscope, we observed the molecular movement, which was made visible through the application of light.
6

The Chemistry of Fullerenes, Polymers, and Host/Guest Interactions

Schoonover, Daniel Vernon 03 March 2015 (has links)
The exploitation of the relationship between the chemical and physical properties of materials is the hallmark of advancing science throughout the world. The basic understanding of how and why molecules react and interact with each other in different environments allows for the discovery and implementation of new materials and devices that not only advance the state of human life but continually change the planet. The work described in this dissertation generally falls under three diverse categories: functionalization of fullerenes, investigation of host/guest interactions in solution, and the synthesis and characterization of ion containing polymers. The separation and functionalization of fullerenes is a recent and exciting area of research. The separation methods outlined are intended to increase the availability of endohedral metallofullerenes by decreasing their cost of production. Functionalized fullerene species were achieved through Bingel and Prato reactions to provide materials with novel functional groups. These materials may be further utilized in photovoltaic or other organic electronic devices. The characterization of noncovalent interactions between different molecules in solution is the focus of supramolecular chemistry. Isothermal Titration Calorimetry stands out as one of the best, among the many methods used to elucidate the characteristics of these systems. The binding of bis- imidazolium and paraquat guests with macrocyclic host molecules has been explored in this work. The measurements of the association constants for these systems will aid in the ongoing synthesis of new host/guest systems. Ion containing polymers were synthesized and characterized for their use in electroactive devices. Imidazolium containing polymers with bulky anions were synthesized on low glass transition polymer chains. These materials had enhanced ion conductivity and may eventually be used in electronic actuator materials. / Ph. D.
7

Host-Guest Systems Based on Crown Ether, Cryptand, and Pseudocryptand Hosts with Paraquat, Diquat, Secondary Ammonium, and Monopyridinium Salt Guests

Huang, Feihe 25 March 2005 (has links)
Supramolecular host-guest chemistry is a topic of great current interest. However, the further development of host-guest chemistry is still limited by the number of available host-guest recognition motifs. This makes it necessary and valuable to find new host-guest recognition motifs and apply known host-guest recognition motifs in the preparation of novel supramolecular systems. By comparing the crystal structures of the host and its taco complex, we proved that folding is a necessary step during the formation of taco complexes. Based on the known bis(m-phenylene)-32-crown-10/paraquat recognition motif, the first solid-state supramolecular poly(taco complex) was prepared. We demonstrate not only that bis(m-phenylene)-32-crown-10-based cryptands are powerful hosts for paraquat derivatives compared with the simple crown ether, but also that cooperative complexation can be obtained with the cryptand structure. It was shown that the significant improvement in complexation was the result of the combination of the preorganization of the cryptand hosts and the introduction of additional and optimized binding sites. Furthermore, it was demonstrated that improved complexation of bis(secondary ammonium) and bisparaquat salts could also be achieved by the formation of the pseudocryptand structure. We also prepared two dimers of inclusion cryptand/paraquat complexes driven by dipole-dipole and face-to-face p-stacking interactions. An interesting complex based on dibenzo-24-crown-10 and diquat was prepared. In its crystal structure the diquat guest lies in the concave cavity provided by two dibenzo-24-crown-8 hosts. Monopyridinium-based [2]- and [3]-pseudorotaxanes were prepared based on the newly discovered bis(m-phenylene)-32-crown-10/monopyridinium salt and cryptand/monopyridinium salt recognition motifs. Inspired by the formation of solid-state taco complexes between bis(m-phenylene)-32-crown-10 and paraquat derivatives, we designed and synthesized the first cylindrical bis(crown ether) host for paraquat derivatives and studied its complexation with paraquat. We prepared three slow-exchange C3-symmetric inclusion complexes based on a newly discovered cryptand/trispyridinium recognition motif, in which 1,3,5-trispyridiniumbenzene salts act as guests. Finally the application of several new and known recognition motifs in the preparation of a supramolecular poly[3]pseudrotaxane, and the first pseudorotaxane-type supramolecular star-shaped polymer, and the first supramolecular hyperbranched polymer was discussed. / Ph. D.
8

Pseudorotaxanes and Supramolecular Polypseudorotaxanes Based on the Dibenzo-24-Crown-8/Paraquat Recognition Motif

Huang, Feihe 06 November 2003 (has links)
The research presented in this thesis focused on pseudorotaxanes and supramolecular polymers based on a new recognition motif, the dibenzo-24-crown-8/paraquat recognition motif. Main kinds of pseudorotaxanes and rotaxanes and various protocols used for the study of them were discussed first. By preparation and characterization of a series of pesudorotaxanes based on DB24C8 and paraquat derivatives, it was found that these complexes were stabilized by N+...O interactions, C-H...O hydrogen bonding, and face-to-face p-stacking interactions. Because methyl protons of paraquat are involved in hydrogen bonding to the host, the substitution of any methyl hydrogen on paraquat causes apparent association constant of the pseudorotaxane to decrease. The concentration dependence of apparent association constants, Ka,exp, of fast exchange host-guest systems was studied for the first time by using complexes based on viologens and crown ethers as examples. While the bis(hexafluorophosphate) salts of paraquat derivatives are predominantly ion paired in acetone (and other low dielectric constant solvents presumably) the complex based on dibenzo-24-crown-8 and paraquat is not ion paired in solution, resulting in concentration dependence of Ka,exp. However, four complexes of two different bis(m-phenylene)-32-crown-10 (BMP32C10) derivatives and bis(p-phenylene)-34-crown-10 (BPP3C10) with viologens are ion paired in solution, as shown by the fact that Ka,exp is not concentration dependent for these systems involving hosts with freer access to bound guests. X-ray crystal structures support these soluton-based assessments in that there is clearly ion pairing of the cationic guest and its PF6- counterions in the solid states of the latter four examples, but not in the former. The complexes based on the new dibenzo-24-crown-8/paraquat recognition motif are thus different from the complexes based on two old recognition motifs: the BPP34C10/BMP32C10-paraquat and DB24C8-ammonium motives. In order to compare these recognition motives further, the selectivity between two hosts, DB24C8 and BPP34C10, and two guests, dimethyl paraquat and dibenzyl ammnonium salt, was discussed. By individual and competitive complexation studies, it was demonstrated that DB24C8 is a better host than BPP34C10 for paraquat, and that paraquat is a better guest than dibenzyl ammonium salt for DB24C8. Finally the DB24C8-paraquat recognition motif was successfully applied in the preparation the first star-shaped supramolecular polymer based on a tetraparaquat guest and a DB24C8 functionalized polystyrene oligomer. A model system based on this guest and DB24C8 was also studied for comparison. It was found that the complexation in these two systems is cooperative, as are most biological complexations of multitopic species. Due to the ready availability of DB24C8 and paraquat derivatives, the new recognition motif should prove to be very valuable for self-assembly of other more sophisticated supramolecular systems. / Master of Science
9

Design, Preparation and Characterization of Novel Pseudorotaxanes, Semirotaxanes, Rotaxanes, Non-Covalent Supramolecular Polymers and Polycatenanes

Niu, Zhenbin 17 October 2011 (has links)
Design and preparation of novel host/guest systems, such as pseudorotaxanes, semirotaxanes, rotaxanes and catenanes, with high association constants, enhanced yields and the abilities to respond to external stimuli are of great importance and significance due to their topological novelty and potential application. The convergence of supramolecular chemistry with polymer science provides an important way to extend the scope of polymer and material sciences by incorporating designed host/guest systems into polymers, and the resulting non-covalently linked supramolecular polymers are expected to have unusual properties due to their unique architectures compared with traditional polymers. After discovery of bis(meta-phenylene)-32-crown-10 (BMP32C10) derivative/paraquat complexes, for about a quarter century only “taco”-shaped complexes were observed by X-ray crystallography. Here, by the self-assembly of a BMP32C10 bearing two electron-donating groups (carbazoles) with electron-accepting paraquat derivatives, the first [2]pseudorotaxane and the first pseudocryptand-type poly[2]pseudorotaxane based on BMP32C10 were isolated as crystalline solids as shown by X-ray analyses. The first dual component pseudocryptand-type [2]pseudorotaxanes were designed and prepared via the self-assembly of synthetically easily accessible BMP32C10 pyridyl, quinolyl and naphthyridyl derivatives with paraquat. The formation of the pseudocryptand structures in the complexes remarkably improved the association constants by forming the third pseudo-bridge via H-bonding with the guest and π-stacking of the heterocyclic units. A pseudocryptand-type [2]pseudorotaxane was formed via the self-assembly of a dipyridyl BMP32C10 derivative and a paraquat derivative. Due to the basicity of the pyridyl group, which forms the third pseudo-bridge of the pseudocryptand, this pseudorotaxane represents the first system with acid-base adjustable association constants, i. e., finite both under acidic and neutral conditions. The first pseudocryptand-type supramolecular [3]pseudorotaxane was designed and prepared via the self-assembly of a bispicolinate BMP32C10 derivative and a bisparaquat. The complexation behavior was cooperative. In addition, the complex comprised of the BMP32C10 derivative and a cyclic bisparaquat demonstrated strong binding; interestingly, a poly[2]pseudocatenane structure was formed in the solid state for the first time. Two novel BMP32C10 cryptands, bearing covalent and metal complex linkages, were designed and prepared. By employing the self-assembly of these biscryptands, which can be viewed as AA monomers, and a bisparaquat, which can be viewed as a BB monomer, the first AA/BB-type linear supramolecular polymers with relatively high molecular weights were successfully prepared. Via the self-assembly of two BMP32C10-based cryptands, bearing covalent and metal complex (ferrocene) linkages, with dimethyl paraquat, novel [3]pseudorotaxanes were formed statistically and anticooperatively, respectively. From a hydroxyl-functionalized secondary ammonium salt a [2]semirotaxane and a [2]rotaxane were prepared successfully with dibenzo-24-crown-8 (DB24C8). X-ray analysis of a single crystal of the [2]semirotaxane confirmed its semirotaxane nature. In addition, the formation of the [2]semirotaxane can be reversibly controlled by adding KPF6 and 18C6 sequentially. This system affords a way to prepare novel supramolecular polymers. Dibenzo-30-crown-10 (DB30C10) derivatives and pyridine-based DB30C10 cryptands were prepared by employing the templating method established by our group. A [2]pseudorotaxane was prepared based on DB30C10 diol and paraquat diol. The [3]pseudorotaxane formed via the self-assembly between DB30C10 cryptand and bisparaquat diol occurred in a cooperative manner. In addition, a bromo-functionalized DB30C10 cryptand was successfully designed and prepared. An alkyne-functionalized DB30C10 cryptand was designed and is under preparation; its precursors have been prepared successfully. In the future, based on these functionalized cryptands and paraquat salts, AA and AB type monomers will be prepared. Via the self-assembly between these monomers, non-covalent supramolecular polymers with high molecular weight will be afforded. A novel DB30C10 cryptand bearing an organometallic bridge, ferrocene, was prepared via 1-(3'-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) coupling of the crown ether diol with ferrocene dicarboxylic acid. The cryptand is dimerized in the solid state via π, π-stacking and hydrogen bonds. The ferrocene-based cryptand formed novel [2]pseudorotaxanes with paraquat and diquat PF₆ salts with association constants (Kₐ) of 1.7 ± 0.1 x 10³ and 4.2 ± 0.3 x 10⁴ M⁻¹ in acetone-d₆, respectively. In order to prepare linear polycatenanes, the preparation of which represent a real synthetic challenge, a series phenanthroline derivatives were designed and prepared. A “U” shaped monomer was successfully prepared in relative high yield with good solubility. In the future, real linear polycatenanes will be prepared. In addition, a novel diphenanthroline-based BMP32C10 derivative was prepared in high yield and the complexation behavior between it and dimethyl paraquat was studied. / Ph. D.
10

Design, Synthesis and Self-Assembly of Polymeric Building Blocks and Novel Ionic Liquids, Ionic Liquid-Based Polymers and Their Properties

Lee, Minjae 09 September 2010 (has links)
The convergence of supramolecular and polymer sciences has led to the construction of analogs of traditional covalently-constructed polymeric structures and architectures by supramolecular methods. Host-guest complexations of polymers are also possible through well-defined synthesis of polymeric building blocks, for novel supramolecular polymers. Monotopic polymeric building blocks were synthesized by controlled radical polymerizations with a crown or paraquat initiator. The combinations of terminal and central functionalities of host and guest polymeric building blocks provided chain-extended and tri-armed homopolymers, and diblock and tri-armed copolymers. A supramolecular graft copolymer was formed from a main-chain poly(ester crown ether) and a paraquat terminated polystyrene. This comb-like copolymer was characterized by a large viscosity increase. A four-armed polystyrene-b-poly(n-butyl methacrylate) was synthesized from a pseudorotaxane macroinitiator derived from a complex of a crown-centered polystyrene and a dufunctional paraquat compound. A single peak with higher molecular weight from size exclusion chromatography proved the copolymer formation. Supramolecular interactions enhance the ionic conductivity of semi-crystalline ionic polymers; the ionic conductivity of a C₆-polyviologen and dibenzo-30-crown-10 mixture was 100 times higher than the polyviologen itself. However, ionic conductivities of amorphous polyviologens with polyethers were influenced only by glass transition temperature changes. New imidazolium ionic liquid monomers and imidazolium based polymers were synthesized for potential applications in electroactive devices, such as actuators. Structure-property relationships for pendant imidazolium polyacrylates and main-chain imidazolium polyesters were investigated. Terminal ethyleneoxy moeties enhanced ionic conduction 2~3 times; however, the alkyl chain length effect was negligible. For the imidazoium polyesters, higher ion conductivities result from 1) mono-imidazolium over bis-imidazolium, and 2) bis(trifluoromethanesulfonyl)imide polymers over hexafluorophosphate analogs. A semi-crystalline hexafluorophosphate polyester with C₁₀-sebacate-C₁₀, displayed 400-fold higher ionic conductivity than the amorphous C₆-sebacate-C₆ analogue, suggesting the formation of a biphasic morphology in the former polyester. New dicationic imidazolium salts have interesting features. 1,2-Bis[N-(N'-alkylimidazoilum)]ethane salts stack well in the solid state and possess multiple solid-solid phase transitions. They complex with dibenzo-24-crown-8 and a dibenzo-24-crown-8 based pyridyl cryptand with <i>K<sub>a</sub></i> = ~30 and 360 M¹, respectively. Some of these dicationic imidazolium salts have low entropies of fusion, typical of plastic crystals. These newly discovered imidazolium homopolymers have ionic conductivities up to 10⁴ (S cm⁻¹); however, better properties are still required. Well-designed block copolymers should provide both good electrical and mechanical properties from bicontinuous morphologies, such ion channels. / Ph. D.

Page generated in 0.0552 seconds