• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 23
  • 14
  • 11
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 89
  • 83
  • 78
  • 25
  • 24
  • 22
  • 18
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A study of gradient based particle swarm optimisers

Barla-Szabo, Daniel 29 November 2010 (has links)
Gradient-based optimisers are a natural way to solve optimisation problems, and have long been used for their efficacy in exploiting the search space. Particle swarm optimisers (PSOs), when using reasonable algorithm parameters, are considered to have good exploration characteristics. This thesis proposes a specific way of constructing hybrid gradient PSOs. Heterogeneous, hybrid gradient PSOs are constructed by allowing the gradient algorithm to optimise local best particles, while the PSO algorithm governs the behaviour of the rest of the swarm. This approach allows the distinct algorithms to concentrate on performing the separate tasks of exploration and exploitation. Two new PSOs, the Gradient Descent PSO, which combines the Gradient Descent and PSO algorithms, and the LeapFrog PSO, which combines the LeapFrog and PSO algorithms, are introduced. The GDPSO represents arguably the simplest hybrid gradient PSO possible, while the LeapFrog PSO incorporates the more sophisticated LFOP1(b) algorithm, exhibiting a heuristic algorithm design and dynamic time step adjustment mechanism. The strong tendency of these hybrids to prematurely converge is examined, and it is shown that by modifying algorithm parameters and delaying the introduction of gradient information, it is possible to retain strong exploration capabilities of the original PSO algorithm while also benefiting from the exploitation of the gradient algorithms. / Dissertation (MSc)--University of Pretoria, 2010. / Computer Science / unrestricted
42

Electronic warfare asset allocation with human-swarm interaction

Boler, William M. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Finding the optimal placement of receiving assets among transmitting targets in a three-dimensional (3D) space is a complex and dynamic problem that is solved in this work. The placement of assets in R^6 to optimize the best coverage of transmitting targets requires the placement in 3D-spatiality, center frequency assignment, and antenna azimuth and elevation orientation, with respect to power coverage at the receiver without overloading the feed-horn, maintaining suficient power sensitivity levels, and maintaining terrain constraints. Further complexities result from the human-user having necessary and time-constrained knowledge to real-world conditions unknown to the problem space, such as enemy positions or special targets, resulting in the requirement of the user to interact with the solution convergence in some fashion. Particle Swarm Optimization (PSO) approaches this problem with accurate and rapid approximation to the electronic warfare asset allocation problem (EWAAP) with near-real-time solution convergence using a linear combination of weighted components for tness comparison and particles representative of asset con- gurations. Finally, optimizing the weights for the tness function requires the use of unsupervised machine learning techniques to reduce the complexity of assigning a tness function using a Meta-PSO. The result of this work implements a more realistic asset allocation problem with directional antenna and complex terrain constraints that is able to converge on a solution on average in 488.7167+-15.6580 ms and has a standard deviation of 15.3901 for asset positions across solutions.
43

Scaling and distribution of Particle Swarm Optimization Algorithms on Microsoft Azure

Delis, Nikolaos January 2023 (has links)
Introduction. Particle Swarm Optimization (PSO) is a heavy-duty algorithm that is used to identify the optimum (maximum or minimum) solution of a formula with multiple unknown factors. PSO algorithms are used widely for various optimization problems, and all face the same challenge. Being iterative algorithms that in each iteration perform a mathematical formula, PSO algorithms demand a high capacity of physical resources and are often time consuming. This combination is even more challenging when executing a PSO algorithm on the cloud since expensive resources used over a long time come at a high cost and cheaper resources struggle to perform the task. To avoid high costs and achieve the best possible performance, one needs to choose the correct computational resources and configure them accordingly. Objectives. The goal of this study is to identify the optimum tools and configurations to execute a PSO algorithm on Microsoft’s cloud platform, Azure. To achieve that, we choose the Azure resources that are designed to perform deterministic tasks and to be distributed and scaled automatically by Azure. Those are Azure Functions and Azure Durable Functions. We experiment with various configurations, and we collect and compare the results to draw conclusions about which combination performs best. Methods. To identify which combination of Azure resources and configuration performs best in the cloud (Microsoft Azure), we perform experiments and collect metrics which we then aggregate and compare with each other, as well as with the metrics collected by executing the same combination on-premises. During those experiments, we execute the same PSO algorithm using the same variables, the values of which were calculated before performing the experiments. Results. Upon performing the experiments, we collected the results of each experiment, which consist of the time it took to execute, the number of zeros (beyond the decimal point) found in the result, as well as the Global Priority percentage which lead to that result. The results indicate differences both between the on-premises and on-cloud execution and between the various configurations and Azure resources. Conclusion. We succeeded in finding a combination using Azure Durable Functions with the appropriate configuration, which vastly outperforms all others. Concluding, the outcome of this study is that heavy-duty algorithms, such as PSO, can indeed be executed on Azure, with significantly improved performance, when using the right configuration and exploiting the resources to their whole extent. Additionally, we learned that an appropriately configured Azure resource can even outperform an identical execution on-premises (using equal resources).
44

Current Sharing To Minimize Power Losses In Parallel Converters Using Pso

Li, Dan 11 December 2009 (has links)
The Power Electronic Building Block (PEBB) concept leads to multifunctional converter systems, which provide robustness and flexibility in heavily power electronics based power systems. Systems comprised of flexible modular converters may have multiple possible operation conditions with respect to individual converters that meet the overall system goals. In this thesis, an optimization method for such flexible online power electronic systems is developed to minimize power losses of the overall group of converters in the system. Here the objective is to allocate sharing such that compensation objectives are met while the power loss of the entire parallel group of compensators is minimized. Considering optimization of an online power electronic system, convergence time and running in the feasible region should be taken into account. This thesis is
45

Multidisciplinary Optimization Framework for High Speed Train using Robust Hybrid GA-PSO Algorithm

Vytla, Veera Venkata Sunil Kumar 13 July 2011 (has links)
No description available.
46

Otimização da relação custo benefício de projetos de eficiência energética do tipo baixa renda

Mota, Jorge Felipe Barbosa 09 September 2016 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-10T13:26:21Z No. of bitstreams: 1 jorgefelipebarbosamota.pdf: 2249566 bytes, checksum: 432c0da8b02f3dd942bb9fb9af4add75 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-13T18:36:13Z (GMT) No. of bitstreams: 1 jorgefelipebarbosamota.pdf: 2249566 bytes, checksum: 432c0da8b02f3dd942bb9fb9af4add75 (MD5) / Made available in DSpace on 2017-03-13T18:36:13Z (GMT). No. of bitstreams: 1 jorgefelipebarbosamota.pdf: 2249566 bytes, checksum: 432c0da8b02f3dd942bb9fb9af4add75 (MD5) Previous issue date: 2016-09-09 / As concessionárias de energia são obrigadas a aplicar parte de sua receita operacional líquida na execução de projetos de eficiência energética, de acordo com a Agência Nacional de Energia Elétrica (ANEEL). O projeto do tipo baixa renda é parte desse portfólio de projetos possíveis e capta a maior parte dessa aplicação. Dessa forma, torna-se de suma importância a criação de uma metodologia para dimensionar os projetos dessa tipologia e direcionar as tomadas de decisões das concessionárias de energia do Brasil. Métodos de otimização bioinspirados tratam de problemas combinatórios e não lineares, caso do equacionamento matemático do cálculo da relação custo benefício de projetos de eficiência energética de tipologia baixa renda. O presente trabalho propõe a aplicação de dois métodos de otimização reconhecidos, a otimização por colônia de formigas, ou Ant Colony Optimization (ACO), e a otimização por enxame de partículas, ou Particle Swarm Optimization (PSO), para calcular e otimizar a relação custo benefício de projetos de eficiência energética regulatórios do tipo baixa renda. Sendo assim, aplica métodos computacionais bioinspirados no dimensionamento dos projetos de eficiência energética, além de otimizar esses projetos, obtendo o melhor resultado operacional, do ponto de vista da eficiência energética, com o melhor custo para a sociedade. / The electricity utilities are required to invest part of its net operating income in the implementation of energy efficiency projects, according to the National Electric Energy Agency (ANEEL). The low-income type design is part of portfolio of possible projects and captures most of this application. Thus, it becomes very important to create a methodology to scale projects of this type and direct decision making of utilities in Brazil. Bioinspired optimization methods deal with combinatorial and nonlinear problems, if the mathematical equations for calculating the cost benefit rate of energy efficiency projects in low-income type. This paper proposes two recognized bioinspired optimization methods, the Ant Colony Optimization (ACO) and the Particle Swarm Optimization (PSO) to calculate and optimize the cost effectiveness of energy efficiency regulatory projects, the low-income type. Thus, propose a scientific methods of sizing of the energy efficiency projects, while optimizing these projects, obtaining the best operating result, from the point of view of energy efficiency with the best cost to society.
47

Conception de commande tolérante aux défauts pour les systèmes multi-agents : application au vol en formation d'une flotte de véhicules autonomes aériens / FDI/FT Methods Design to multi-agent systems : Application to formation control of a fleet of autonomous aerial vehicles

Belkadi, Adel 12 October 2017 (has links)
Ces dernières années, l’émergence des nouvelles technologies tels que la miniaturisation des composants, les dispositifs de communication sans fils, l’augmentation de la taille de stockage et les capacités de calcul, a permis la conception de systèmes multi-agents coopératifs de plus en plus complexes. L’un des plus grands axes de recherche dans cette thématique concerne la commande en formation de flottes de véhicules autonomes. Un grand nombre d’applications et de missions, civiles et militaires, telles que l’exploration, la surveillance, et la maintenance, ont alors été développées et réalisées dans des milieux variés (terre, air, eau). Durant l’exécution de ces tâches, les véhicules doivent interagir avec leur environnement et entre eux pour se coordonner. Les outils de communication disponibles disposent souvent d’une portée limitée. La préservation de la connexion au sein du groupe devient alors un des objectifs à satisfaire pour que la tâche puisse être accomplie avec succès. Une des possibilités pour garantir cette contrainte est le déplacement en formation permettant de préserver les distances et la structure géométrique du groupe. Il est toutefois nécessaire de disposer d’outils et de méthodes d’analyse et de commande de ces types de systèmes afin d’exploiter au maximum leurs potentiels. Cette thèse s’inscrit dans cette direction de recherche en présentant une synthèse et une analyse des systèmes dynamiques multi-agents et plus particulièrement la commande en formation de véhicules autonomes. Les lois de commande développées dans la littérature pour la commande en formation permettent d’accomplir un grand nombre de missions avec un niveau de performance élevé. Toutefois, si un défaut/défaillant apparaît dans la formation, ces lois de commandes peuvent s’avérer très limitées, engendrant un comportement instable du système. Le développement de commandes tolérantes aux défauts devient alors primordial pour maintenir les performances de commande en présence de défauts. Cette problématique sera traitée dans ce mémoire de thèse et concernera le développement et la conception de commandes en formation tolérantes au défaut dévolu à une flotte de véhicules autonomes suivant différente configuration/structuration / In recent years, the emergence of new technologies such as miniaturization of components, wireless communication devices, increased storage size and computing capabilities have allowed the design of increasingly complex cooperative multi-agent systems. One of the main research axes in this topic concerns the formation control of fleets of autonomous vehicles. Many applications and missions, civilian and military, such as exploration, surveillance, and maintenance, were developed and carried out in various environments. During the execution of these tasks, the vehicles must interact with their environment and among themselves to coordinate. The available communication tools are often limited in scope. The preservation of the connection within the group then becomes one of the objectives to be satisfied in order to carry out the task successfully. One of the possibilities to guarantee this constraint is the training displacement, which makes it possible to preserve the distances and the geometrical structure of the group. However, it is necessary to have tools and methods for analyzing and controlling these types of systems in order to make the most of their potential. This thesis is part of this research direction by presenting a synthesis and analysis of multi-agent dynamical systems and more particularly the formation control of autonomous vehicles. The control laws developed in the literature for formation control allow to carry out a large number of missions with a high level of performance. However, if a fault/failure occurs in the training, these control laws can be very limited, resulting in unstable system behavior. The development of fault tolerant controls becomes paramount to maintaining control performance in the presence of faults. This problem will be dealt with in more detail in this thesis and will concern the development and design of Fault tolerant controls devolved to a fleet of autonomous vehicles according to different configuration/structuring
48

Aplicativo web para projeto de sensores ópticos baseados em ressonância de plasmons de superífice em interfaces planares

CAVALCANTI, Leonardo Machado 16 August 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2017-01-30T18:17:26Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTACAO_LEO_DEFESA - FINAL - CATALOGADA PDF.pdf: 4585329 bytes, checksum: 4b70c80127866cd2da97a6217bb6a34f (MD5) / Made available in DSpace on 2017-01-30T18:17:27Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTACAO_LEO_DEFESA - FINAL - CATALOGADA PDF.pdf: 4585329 bytes, checksum: 4b70c80127866cd2da97a6217bb6a34f (MD5) Previous issue date: 2016-08-16 / CNPQ / Um dos principais desafios no projeto de sensores baseados em Ressonância de Plasmons de Superfície — RPS — é maximizar sua sensibilidade. Neste trabalho é proposto o uso de dois algoritmos heurísticos, Monte Carlo e Enxame de Partículas, para otimização de sensores baseados em RPS em interfaces planares, i.e, nas configurações de Kretschmann e de Otto, sem o auxílio da aproximação lorentziana para a curva de ressonância. Devido à natureza probabilística dos algoritmos, consegue-se obter um método simples e robusto para atingir essa otimização. É feita uma comparação quanto à eficiência computacional dos algoritmos em relação ao método tradicional de otimização, ficando demonstrado que o método de Enxame de Partículas é o mais eficiente em relação às outras técnicas. Com o emprego desse método, a dependência espectral dos parâmetros ótimos é obtida para sensores utilizando vários metais nas configurações de Kretschmann e de Otto, tanto para aplicações em meios gasosos quanto em meios aquosos. Um aplicativo foi desenvolvido e sua funcionalidade demonstrada, que pode ser executado diretamente via web, com base na metodologia proposta, para otimização de sensores RPS em interfaces planares. / One of the main challenges in the design of surface plasmon resonance – SPR – sensor systems is to maximize their sensitivity. In this work one proposes the use of two heuristic algorithms, Monte Carlo and Particle Swarm, for optimization of SPR sensors in planar interfaces, i.e, in the Kretschmann and Otto configurations, without use of the Lorentzian approximation to the resonance curve. Because of the probabilistic nature of the algorithms, one manages to obtain a simple and robust method to achieve optimization. A comparison is made on the computational efficiency of the algorithm relative to the traditional method of optimization, showing that the particle swarm optimization method is more efficient compared to other techniques. By employing this method, the spectral dependence of optimum parameters is obtained for sensors using a wide range of metal films in the Kretschmann and Otto configurations, both for applications in gaseous an in aqueous media. An app was developed and its functionality can be demonstrated, by direct execution via web, based on the proposed methodology for optimization of SPR sensors on planar interfaces.
49

Detecção automática de massas em imagens mamográficas usando particle swarm optimization (PSO) e índice de diversidade funcional

Silva Neto, Otilio Paulo da 04 March 2016 (has links)
Made available in DSpace on 2016-08-17T14:52:40Z (GMT). No. of bitstreams: 1 Dissertacao-OtilioPauloSilva.pdf: 2236988 bytes, checksum: e67439b623fd83b01f7bcce0020365fb (MD5) Previous issue date: 2016-03-04 / Breast cancer is now set on the world stage as the most common among women and the second biggest killer. It is known that diagnosed early, the chance of cure is quite significant, on the other hand, almost late discovery leads to death. Mammography is the most common test that allows early detection of cancer, this procedure can show injury in the early stages also contribute to the discovery and diagnosis of breast lesions. Systems computer aided, have been shown to be very important tools in aid to specialists in diagnosing injuries. This paper proposes a computational methodology to assist in the discovery of mass in dense and nondense breasts. This paper proposes a computational methodology to assist in the discovery of mass in dense and non-dense breasts. Divided into 6 stages, this methodology begins with the acquisition of the acquired breast image Digital Database for Screening Mammography (DDSM). Then the second phase is done preprocessing to eliminate and enhance the image structures. In the third phase is executed targeting with the Particle Swarm Optimization (PSO) to find regions of interest (ROIs) candidates for mass. The fourth stage is reduction of false positives, which is divided into two parts, reduction by distance and clustering graph, both with the aim of removing unwanted ROIs. In the fifth stage are extracted texture features using the functional diversity indicia (FD). Finally, in the sixth phase, the classifier uses support vector machine (SVM) to validate the proposed methodology. The best values found for non-dense breasts, resulted in sensitivity of 96.13%, specificity of 91.17%, accuracy of 93.52%, the taxe of false positives per image 0.64 and acurva free-response receiver operating characteristic (FROC) with 0.98. The best finds for dense breasts hurt with the sensitivity of 97.52%, specificity of 92.28%, accuracy of 94.82% a false positive rate of 0.38 per image and FROC curve 0.99. The best finds with all the dense and non dense breasts Showed 95.36% sensitivity, 89.00% specificity, 92.00% accuracy, 0.75 the rate of false positives per image and 0, 98 FROC curve. / O câncer de mama hoje é configurado no senário mundial como o mais comum entre as mulheres e o segundo que mais mata. Sabe-se que diagnosticado precocemente, a chance de cura é bem significativa, por outro lado, a descoberta tardia praticamente leva a morte. A mamografia é o exame mais comum que permite a descoberta precoce do câncer, esse procedimento consegue mostrar lesões nas fases iniciais, além de contribuir para a descoberta e o diagnóstico de lesões na mama. Sistemas auxiliados por computador, têm-se mostrado ferramentas importantíssimas, no auxilio a especialistas em diagnosticar lesões. Este trabalho propõe uma metodologia computacional para auxiliar na descoberta de massas em mamas densas e não densas. Dividida em 6 fases, esta metodologia se inicia com a aquisição da imagem da mama adquirida da Digital Database for Screening Mammography (DDSM). Em seguida, na segunda fase é feito o pré-processamento para eliminar e realçar as estruturas da imagem. Na terceira fase executa-se a segmentação com o Particle Swarm Optimization (PSO) para encontrar as regiões de interesse (ROIs) candidatas a massa. A quarta fase é a redução de falsos positivos, que se subdivide em duas partes, sendo a redução pela distância e o graph clustering, ambos com o objetivo de remover ROIs indesejadas. Na quinta fase são extraídas as características de textura utilizando os índices de diversidade funcional (FD). Por fim, na sexta fase, utiliza-se o classificador máquina de vetores de suporte (SVM) para validar a metodologia proposta. Os melhores valores achados para as mamas não densas, resultaram na sensibilidade de 96,13%, especificidade de 91,17%, acurácia de 93,52%, a taxe de falsos positivos por imagem de 0,64 e a acurva Free-response Receiver Operating Characteristic (FROC) com 0,98. Os melhores achados para as mamas densas firam com a sensibilidade de 97,52%, especificidade de 92,28%, acurácia de 94,82%, uma taxa de falsos positivos por imagem de 0,38 e a curva FROC de 0,99. Os melhores achados com todas as mamas densas e não densas, apresentaram 95,36% de sensibilidade, 89,00% de especificidade, 92,00% de acurácia, 0,75 a taxa de falsos positivos por imagem e 0,98 a curva FROC.
50

Automated Camera Placement using Hybrid Particle Swarm Optimization / Automated Camera Placement using Hybrid Particle Swarm Optimization

Amiri, Mohammad Reza Shams, Rohani, Sarmad January 2014 (has links)
Context. Automatic placement of surveillance cameras' 3D models in an arbitrary floor plan containing obstacles is a challenging task. The problem becomes more complex when different types of region of interest (RoI) and minimum resolution are considered. An automatic camera placement decision support system (ACP-DSS) integrated into a 3D CAD environment could assist the surveillance system designers with the process of finding good camera settings considering multiple constraints. Objectives. In this study we designed and implemented two subsystems: a camera toolset in SketchUp (CTSS) and a decision support system using an enhanced Particle Swarm Optimization (PSO) algorithm (HPSO-DSS). The objective for the proposed algorithm was to have a good computational performance in order to quickly generate a solution for the automatic camera placement (ACP) problem. The new algorithm benefited from different aspects of other heuristics such as hill-climbing and greedy algorithms as well as a number of new enhancements. Methods. Both CTSS and ACP-DSS were designed and constructed using the information technology (IT) research framework. A state-of-the-art evolutionary optimization method, Hybrid PSO (HPSO), implemented to solve the ACP problem, was the core of our decision support system. Results. The CTSS is evaluated by some of its potential users after employing it and later answering a conducted survey. The evaluation of CTSS confirmed an outstanding satisfactory level of the respondents. Various aspects of the HPSO algorithm were compared to two other algorithms (PSO and Genetic Algorithm), all implemented to solve our ACP problem. Conclusions. The HPSO algorithm provided an efficient mechanism to solve the ACP problem in a timely manner. The integration of ACP-DSS into CTSS might aid the surveillance designers to adequately and more easily plan and validate the design of their security systems. The quality of CTSS as well as the solutions offered by ACP-DSS were confirmed by a number of field experts. / Sarmad Rohani: 004670606805 Reza Shams: 0046704030897

Page generated in 0.4988 seconds