• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 21
  • 17
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 70
  • 42
  • 33
  • 31
  • 30
  • 22
  • 22
  • 18
  • 17
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Silica Coated Core-Shell Quantum Dot-based Electro-Immunosensor for Interferon Gamma TB Disease Biomarker

Mini, Sixolile January 2020 (has links)
>Magister Scientiae - MSc / Tuberculosis (TB) is a disease that results from infection by Mycobacterium tuberculosis, which is regarded the most common infecting organism. TB has killed countless numbers of people particularly in underdeveloped countries. TB bacteria can remain inactive or in dormant state for years without causing symptoms or spreading to other subjects, but as soon as the immune system of the host becomes weakened, the bacteria become active and infect mainly the lungs along with other parts of body. TB cases are further aggravated by other illnesses that affect the immune system, such as human immune virus (HIV), which is very prevalent in resource-poor countries. Interferon-gamma (IFN-γ) is a TB biomarker that has found to have all the qualities that are needed to help and cure Tuberculosis disease. Early diagnosis and treatment are essential measures for effectively controlling the disease. Traditional microbial culture-based tests are the most common methodologies currently used. Usually, these methods involve cell culture, cell counts, and cell enrichment, but this process is time-consuming and laborious, especially for the slow-growing bacteria like M. tuberculosis. Sputum smear is one of the methods currently used to detect acid fast bacilli (AFB) in clinical specimens or fluorescent staining. It is a cost-effective tool for diagnosing patients with TB and to monitor the progress of treatment especially in developing countries. The traditional method of inoculating solid medium such as Lowerstein-Jensen (L-J) or 7H10/7H11 media is also used currently it is slow and takes 6-8 weeks of incubation to diagnose the infection and further more time to determine the susceptibility patterns. The microscopic observation drug susceptibility (MODS) assay they are also used currently they rely on light microscopy to visualize the characteristic cording morphology of M. tuberculosis in liquid culture. MODS has shorter time to culture positivity (average 8 days) compared with LJ medium (average ~26 days), they are very expensive. The Gen-Probe assay specific for M. tuberculosis complex is a rapid detection that is also used, nucleic acid amplification (NAA) test results can be obtained as fast as in two hours (provided if a positive culture is present); it also has a high sensitivity of 99% and specificity of 99.2%. It holds the disadvantage of needing of positive culture that can take several days. Enzyme-linked immunosorbent assay (ELISA), is a test that uses antibodies and colour change to identify a substance. ELISA is an assay that uses a solid-phase enzyme immunoassay (EIA) to detect the presence of a substance, usually an antigen, in a liquid sample or wet sample. It can be used to detection of Mycobacterium antibodies in tuberculosis. The Amplified Mycobacterium Tuberculosis Direct Test (AMTDT) is used for the detection of M. tuberculosis it enables the amplification and detection of M. tuberculosis rRNA directly from respiratory specimens. The diagnostic methods employing genetechnology based on the amplification of DNA or RNA are expected to improve the speed, sensitivity, and specificity of Mycobacterium tuberculosis detection. TB rapid cultivation detection technique, such as MB/BacT system, BactecMGIT 960 system and flow cytometry. The BACTEC MGIT960 system (Becton Dickinson, Sparks, MD) performs incubation and reading of the tubes continuously inside the machine using a predefined algorithm to interpret the fluorescent signal and giving the results as positive or negative. When performing DST, the BACTEC MGIT960 interprets the results as susceptible or resistant to the antibiotic under study. Results are available within 8 days. A recent meta-analysis of the published studies found high accuracy and high predictive values associated with the use of BACTEC MGIT960. These methods are more sensitive and rapid than the traditional microbial culture-based methods. However, they cannot provide the detection results in real-time and most of these methods are centralized in large stationary laboratories because complex instrumentation and highly qualified technical staff are required. Recently, Food and Drug Administration (FDA) approved two new assays that were introduced. These two assays detect in vitro a specific immune response to M. tuberculosis. These tests are the QuantiFERON-TB Gold In-Tube (Cellestis/Qiagen, Carnegie, Australia) and the T-SPOT.TB assay (Oxford Immunotec, Abingdon, United Kingdom). Both assays use whole blood from the patient and measure the production of interferon gamma after the whole blood is exposed to specific antigens from M. tuberculosis. These tests are based on the knowledge that IFN-γ is a product of an active cell-mediated immune response induced by M. tuberculosis. However, TB detection remains a major obstacle due to several drawbacks of these methods. To date, the number of diagnosis approaches for TB has increased as the disease continues to be a major public health problem worldwide and most conventional detection technologies present difficulties in recognizing the presence of M. tuberculosis, since they are time consuming, do not provide clinically reliable results and significantly lack of sensitivity. This thesis focusedon developing two binary and one ternary-electrochemically quantum dots, all synthesised at room temperature in aqueous media for detecting (IFN-γ). Copper telluride (CuTe) and Zinc telluride (ZnTe) was prepared to check how does the two quantum dot behave individual and also to check on how they behave when they are combined and formed ternary quantum dots (CuZnTe). The electrochemical studies of the binary CuTe quantum dots, ZnTe quantum dots and the ternary CuZnTe core-shell quantum dots reveal that ternary quantum dots were stable and showed a significant enhancement in the conductivity of CuZnTe core-shell solution compared to that of CuTe and ZnTe, all studied in solution. The three different quantum dots were capped with three different capping reagents which are tetraethyl orthosilicate (TEOS), thioglycolic acid (TGA), (3-mercaptopropyl) trimethoxysilane (MPS). In the study, a label-free electrochemical immunosensor for the detection of interferon gamma (IFN-γ) was prepared for the first time using ternary quantum dots. The biosensor consists of water-soluble silica coated Copper Zinc telluride (CuZnTe core-shell) quantum dots conjugated to a gold electrode. The antibody-antigen were then conjugated on the CuZnTe core-shell QD modified gold electrode. Results from synthesis of two different binary quantum dots are also presented in the study and compared to the results of the CuZnTe core-shell QDs. The CuTe quantum dots had a small average size which was confirmed through HRTEM, SAXS and XRD analysis
22

Studium vlivu lipozomálních platinových cytostatik na nádorové buňky pomocí voltametrických metod / Influence of liposomal platinum cytostatics on cancer cells – voltammetric study

Laníková, Petra January 2017 (has links)
Aim of this thesis is voltammetric study influence of liposomal platinum cytostatics on cancer cells. One of the goals is summarize available informations about influence of cisplatine on cancer cells, its encapsulation into liposome and affection of this cytostatic cisplatin encapsulated in liposome on cancer cell lines. In literary recherche is detail description of these issues. Than is there specification of voltammetric methods, which serve to electrochemical detection of cisplatin. Based on literary recherche was chosen the best method for detection and subsequently the method was optimalized and than was applied to measuring itself.
23

Voltametrické stanovení chloramfenikolu a ofloxacinu na borem dopované diamantové filmové elektrodě / Voltammetric Determination of Chloramphenicol and Ofloxacin at Boron Doped Diamond Film Electrodes

Ječmínková, Jana January 2011 (has links)
Voltammetric methods for the determination amphenicol antibiotic chloramphenicol (CAP) and quinolone antibiotic Ofloxacin (OFL) were developed. TTechniques differential pulse voltammetry (DPV) and DC voltammetry (DCV) for determination of both substances at boron doped diamond film electrode (BDDFE) were used. The effect of pH of Britton-Robinson buffer was tested and the stability of the signal with repeated measurements was monitored. Optimal pH 6 was used for determining of CAP by both, DPV and DCV techniques. Media of pH 4 for determining of OFL by DPV and DCV was optimal. Under these conditions linear dependences in the calibration concentration region 1.10 -6 - 1.10-4 mol.l -1 were obtained. The limit of determination for the method for CAP by DPV at 3.10 mol.l , by -6 -1 DCV at 3.10 mol.l and for -6 -1 OFL by DPV at 1.10 mol.l -6 -1 and by DCV at 4.10 mol.l -7 -1 was found. The developed methods were used for the determination of CAP in the drug samples Spersadex comp. and OFL determination in drug samples Zanocin 200. Method for solid phase extraction of OFL from samples of urine with voltammetric detection was developed with limit of determination at 7.10 mol.l . -6 -1
24

Electrochemical studies of external forcing of periodic oscillating systems and fabrication of coupled microelectrode array sensors

Clark, David 01 May 2020 (has links)
This dissertation describes the electrochemical behavior of nickel and iron that was studied in different acid solutions via linear sweep voltammetry, cyclic voltammetry, and potentiostatic measurements over a range of temperatures at specific potential ranges. The presented work displays novel experiments where a nickel electrode was heated locally with an inductive heating system, and a platinum (Pt) electrode was used to change the proton concentration at iron and nickel electrode surfaces to control the periodic oscillations (frequency and amplitude) produced and to gain a greater understanding of the systems (kinetics), oscillatory processes, and corrosion processes. Temperature pulse voltammetry, linear sweep voltammetry, and cyclic voltammetry were used for temperature calibration at different heating conditions. Several other metal systems (bismuth, lead, zinc, and silver) also produce periodic oscillations as corrosion occurs; however, creating these with pure metal electrodes is very expensive. In this work, metal systems were created via electrodeposition by using inexpensive, efficient, coupled microelectrode array sensors (CMASs) as a substrate. CMASs are integrated devices with multiple electrodes that are connected externally in a circuit in which all of the electrodes have the same amount of potential applied or current passing through them. CMASs have been used for many years to study different forms of corrosion (crevice corrosion, pitting corrosion, intergranular corrosion, and galvanic corrosion), and they are beneficial because they can simulate single electrodes of the same size. The presented work also demonstrates how to construct CMASs and shows that the unique phenomena of periodic oscillations that can be created and studied by using coated and bare copper CMASs. Furthermore, these systems can be controlled by implementing external forcing with a Pt electrode at the CMAS surface. The data from the single Ni electrode experiments and CMAS experiments were analyzed by using the Nonlinear Time-Series Analysis approach.
25

Využití antimonových filmových elektrod pro stanovení pesticidu trifluralin / Application of Antimony Film Electrodes for Determination of Pesticide Trifluralin

Gajdár, Július January 2015 (has links)
Antimony film electrode was studied for the use in a voltammetric analysis of organic compounds. The substance chosen as an analyte was trifluralin, which is used as a pesticide. The comparison of different substrate electrodes was carried out between five electrodes, which were gold, silver, copper, polished amalgam and glassy carbon electrode (GCE). Best performance was observed on antimony film glassy carbon electrode (SbFGCE). It provided higher sensitivity and lower limit of quantification in comparison with bare GCE. The antimony film was stable and it provided good reproducibility (RSD = 5.2 %). Parameters of an electrochemical preparation of SbFGCE were optimized. Conditions for determination of concentration of trifluralin were optimized on newly prepared SbFGCE. The best conditions were in a solution of methanol and 0.1 M hydrochloric acid in 1:1 ratio measured by differential pulse voltammetry. The limit of quantification was determined as 1.2·10-6 mol·l-1 . A direct voltammetric measurement on SbFGCE was carried out in a model river sample. Lower limits of quantification were achieved with solid phase extraction (SPE). Recovery values were 86 ± 8 % in deionized water with a preconcentration factor of 125. The limit of quantification was lowered to value 1.1·10-8 mol·l-1 . The extraction...
26

Voltametrické stanovení diazepamu a nordiazepamu na meniskem modifikované stříbrné pevné amalgámové elektrodě / Voltammetric determination of diazepam and nordiazepam on meniscus modified silver solid amalgam electrode

Samiec, Petr January 2012 (has links)
Voltammetric methods for the determination of diazepam (DZ) and nordiazepam (NDZ) were developed. Techniques differential pulse voltammetry (DPV) and DC voltammetry for determination of both substances at meniscus modified silver solid amalgam electrode (m-AgSAE) were used. Effect of pHa in media of mixture of Britton-Robinson buffer and methanol (9:1) and 0,1 mol.l-1 NaOH was studied. Stability of the signal with repeated measurements in 0,1 mol.l-1 and methanol (9:1) was monitored. Optimal pHa 13,2 of 0,1 mol.l-1 NaOH was used for determination of DZ by DPV and DCV techniques. Optimal pHa 10,2 in media of mixture of Britton-Robinson buffer and methanol (9:1) was used for determination of NDZ by DPV and DCV techniques. Under these conditions were measured linear dependences in the calibration. Concentration range of DZ was measured with DCV in range of 1.10-4 - 6.10-6 mol.l-1 and DPV with DCV technique in range of 1.10-4 - 2.10-6 mol.l-1. Concentration range of NDZ was measured with DCV technique in range of 1.10-4 - 4.10-6 mol.l-1 and DPV technique in range of 1.10-4 - 2.10-6 mol.l-1. The limit of detection was calculated for DZ 6,6 .10-6 mol.l-1 with DCV and 1.10-6 mol.l-1 with DPV. The limit of detection was calculated for NDZ 5,5.10-6 mol.l-1 with DCV and 1,7.10-6 mol.l-1 with DPV. Developed method...
27

Voltametrické stanovení diazepamu a nordiazepamu na meniskem modifikované stříbrné pevné amalgámové elektrodě / Voltammetric determination of diazepam and nordiazepam on meniscus modified silver solid amalgam electrode

Samiec, Petr January 2013 (has links)
Voltammetric methods for the determination of diazepam (DZ) and nordiazepam (NDZ) were developed. Techniques differential pulse voltammetry (DPV) and DC voltammetry were used for determination of DZ and NDZ at meniscus modified silver solid amalgam electrode (m-AgSAE). The effect of pHa on the intensity of signal was observed in the mixture of Britton-Robinson buffer and methanol (9:1), and in the mixture of 0.1 mol.l−1 NaOH and methanol (9:1). The stability of the signal during repeated measurements in the mixture of 0.1 mol.l−1 NaOH and methanol (9:1), and in the mixture of BR buffer and methanol (9:1) was monitored. Optimal pHa 13.2 of medium of 0.1 mol.l−1 NaOH and methanol (9:1) was used for determination of DZ with DPV and DCV techniques. Optimal pHa 10.1 of medium of BR buffer and methanol (9:1) was used for determination of NDZ with DPV and DCV techniques. Under these conditions linear dependencies calibration were measured. Concentration range of DZ was measured with DCV in range of 10x10−5 - 6x10−6 mol.l−1 and with DPV technique in range of 10x10−5 - 2x10−6 mol.l−1 . Concentration range of NDZ was measured with DCV technique in range of 10x10−5 - 4x10−6 mol.l−1 and with DPV technique in range of 10x10−5 - 2x10−6 mol.l−1 . The limit of detection for DZ was calculated 6.6x10−6 mol.l−1 with DCV and...
28

Aplicação de eletrodos compósitos à base de grafite-poliuretana modificados com polímeros com impressão molecular, na determinação de ácido fólico e diclofenaco / Application of graphite-polyurethane composite electrodes modified with molecularly imprinted polymers in the determination of folic acid and diclofenac

Pereira, Abigail Vasconcelos 14 August 2015 (has links)
Neste trabalho foram preparados eletrodos compósitos grafite-poliuretana modificados com polímeros metacrilatos com impressão molecular (EGPU-MIP) visando a determinação de ácido fólico (FA) e forma ácida do diclofenaco (DCF), os quais foram usados como moléculas molde. O objetivo principal era avaliar o desempenho dos MIPs em relação à seletividade e sensibilidade, além da inovação em relação ao uso dos compósitos como material de eletrodo, relativamente a esses analitos. No caso do FA, os MIP foram preparados com essa molécula, relativamente grande e contendo vários grupos funcionais, para avaliar o efeito dessas características no desempenho do sensor. Inicialmente foram feitos estudos exploratórios usando voltametria cíclica (CV), nos quais o FA apresentou pico irreversível de oxidação em +0,80 V (vs. SCE) e picos reversíveis de redução em -0,40 e -0,65 V (vs. SCE), com respectivos processos de oxidação em -0,33 e -0,49 V (vs. SCE). Foi desenvolvido um procedimento analítico para determinação do fármaco usando voltametria de pulso diferencial (DPV), após otimizar parâmetros tais como composição de MIP no sensor de (2,5%, m/m), amplitude de pulso (a = 50 mV), velocidade de varredura (ν = 10 mV s-1) e meio eletrolítico (tampão acetato, pH = 4,5). Nesse procedimento, determinou-se uma mesma região linear de resposta entre 0,6 e 2,0 µmol L-1 para os dois picos de redução em -0,52 e -0,58 V (vs. SCE), com limites de detecção (LOD) de 0,17 e de 0,03 &micromol L-1, respectivamente. O pico em -0,58 V mostrou-se mais sensível e foi escolhido para determinar o FA nas formulações farmacêuticas Folacin&reg, Afopic&reg e Folifolim&reg, com resultados concordantes com o método oficial baseado na Cromatografia líquida de alta eficiência (HPLC), em 95% de confiança, segundo o teste t-Student. O MIP-FA mostrou-se mais seletivo que o polímero sem impressão molecular (NIP-DCF) frente às interferências do metotrexato (MTX), porem o ácido ascórbico (AA), ácido úrico (UA) e dopamina (DA) mostraram interferências, em relação aos grupos funcionais presentes nessas espécies, com forte influência da rigidez estrutural e da mobilidade rotacional de tais grupos. Outro MIP foi sintetizado com impressão para DCF. A voltametria cíclica mostrou que o DCF apresenta pico irreversível de oxidação em + 0,83 V (vs. SCE), na primeira varredura e picos reversíveis de redução em +0,40 e +0,65 V (vs. SCE), a partir da segunda varredura, com respectivos processos de oxidação em +0,27 e +0,58 V (vs. SCE). Foi desenvolvido um procedimento analítico para determinação do fármaco em formulações comerciais, usando DPAdASV, após otimização dos parâmetros tais como composição de MIP no sensor (2,5%, m/m), tempo de acumulação (300 s) e potencial de pré-concentração (+0,2 V), a = 50 mV, ν = 10 mV s-1 em ácido perclórico pH condicional (pHcond) = 1,6, com uma região linear entre 0,010 e 0,20 nmol L-1 e LOD de 0,99 nmol L-1 para o pico anódico em +0,8 V (vs. SCE). O DCF foi determinado nas formulações farmacêuticas Biofenac&reg, Medley&reg e Voltaren&reg e em urina sintética. O MIP-DCF se mostrou relativamente seletivo ao sinal do DCF, mesmo na presença dos interferentes como ácido meclofenâmico (AMCFN) e ácido mefenâmico (AMFN), os quais apresentam grande semelhança estrutural e funcional em relação ao analito. Deve-se tomar cuidado ao estender o intervalo de potencial operacional para o GPU, neste meio de ácido perclórico, para evitar ativação de grupos funcionais do grafite e/ou da PU. / In this work methacrylate molecularly imprinted polymers (MIP) were prepared using folic acid (FA) as well as diclofenac (DCF) templates. These MIPs were used in the modification of graphite-polyurethane (GPU) composites in order to evaluate the performance of the resulting electrodes in the determination of the templates in pharmaceutical formulations and to estimate the sensitivity and selectivity of the resulting devices joined to the innovation of using the composites in such development regarding these analytes. In the case of FA, MIPs were prepared with this relatively large and containing multiple functional groups, to evaluate the effect of such characteristics in the performance of the sensor. First of all exploratory experiments were performed using cyclic votammetry (CV) in which the FA presented an irreversible oxidation peak at + 0.80 V (vs. SCE) and reversible reductions peaks at -0.40 and -0.65 V (vs. SCE) with respective oxidation at -0.33 and -0.49 V (vs. SCE). An analytical procedure was developed based on differential pulse voltammetry (DPV), after optimizing parameters such as MIP composition in the sensor (2.5%, m/m), pulse amplitude (a = 50 mV), scan rate (ν = 10 mV s-1) and supporting electrolyte (acetate, pH = 4.5). In such procedure was obtained a linear dynamic range from 0.6 to 2.0 &micromol L-1 for both DPV reduction peaks at -0.52 and -0.58 V (vs. SCE), with limit of detection (LOD) of 0.17 and 0.03 &micromol L-1, respectively. As the second on was more sensitive it was chosen for the determination of FA in the commercial pharmaceutical formulation Folacin&reg, Afopic&reg and Folifolim&reg,with results that agreed with those from the official HPLC procedure within 95% confidence level according to the t-Student test. The MIP-FA was more selective than the non-imprinted polymer (NIP-DCF) in relation to the interference of metotrexate (MTX), however ascorbic acid (AA), uric acid (UA) and dopamine (DA) revealed significant interferences regarding the functional groups present in these species, with strong influence from the structural rigidity of the molecule that plays an important role in the rotational mobility of these groups. Another MIP was synthesized with DCF as a template. Cyclic voltammetry demonstrated that the DCF presented a single irreversible oxidation peak at + 0.83 V (vs. SCE) in the first scan, and two reversible reduction peaks at +0.40 and +0.65 V (vs. SCE) with respective oxidation at +0.27 and +0.58 V (vs. SCE), from the second scan. A DPAdASV procedure was also developed for the determination of DCF in commercial formulations after optimizing some experimental parameters such as MIP composition in the sensor (2.5%, m/m), accumulation time (300 s) and potential (+0.2 V), a = 50 mV, v = 10 mV s-1 and supporting electrolyte (perchloric acid pHcond = 1.6). A linear dynamic range from 0.010 to 0.20 nmol L-1 and a LOD of 0.99 nmol L-1 were observed for the anodic peak at +0.8 V (vs. SCE). Then the DCF was determined in the commercial formulations Biofenac&reg, Medley&reg and Voltaren&reg and also in synthetic urine samples. The MIP-DCF sensor showed to be selective regarding the DCF signal even in the presence of meclophenamic acid (AMCFN) and mefenamic acid (AMFN), which present structural and functional similarity when compared with the analyte. Care must be taken when using the GPU in extreme potential windows in the perchloric acid medium, to avoid activation of functional groups in the polymer.
29

Aplicação de eletrodos compósitos à base de grafite-poliuretana modificados com polímeros com impressão molecular, na determinação de ácido fólico e diclofenaco / Application of graphite-polyurethane composite electrodes modified with molecularly imprinted polymers in the determination of folic acid and diclofenac

Abigail Vasconcelos Pereira 14 August 2015 (has links)
Neste trabalho foram preparados eletrodos compósitos grafite-poliuretana modificados com polímeros metacrilatos com impressão molecular (EGPU-MIP) visando a determinação de ácido fólico (FA) e forma ácida do diclofenaco (DCF), os quais foram usados como moléculas molde. O objetivo principal era avaliar o desempenho dos MIPs em relação à seletividade e sensibilidade, além da inovação em relação ao uso dos compósitos como material de eletrodo, relativamente a esses analitos. No caso do FA, os MIP foram preparados com essa molécula, relativamente grande e contendo vários grupos funcionais, para avaliar o efeito dessas características no desempenho do sensor. Inicialmente foram feitos estudos exploratórios usando voltametria cíclica (CV), nos quais o FA apresentou pico irreversível de oxidação em +0,80 V (vs. SCE) e picos reversíveis de redução em -0,40 e -0,65 V (vs. SCE), com respectivos processos de oxidação em -0,33 e -0,49 V (vs. SCE). Foi desenvolvido um procedimento analítico para determinação do fármaco usando voltametria de pulso diferencial (DPV), após otimizar parâmetros tais como composição de MIP no sensor de (2,5%, m/m), amplitude de pulso (a = 50 mV), velocidade de varredura (ν = 10 mV s-1) e meio eletrolítico (tampão acetato, pH = 4,5). Nesse procedimento, determinou-se uma mesma região linear de resposta entre 0,6 e 2,0 µmol L-1 para os dois picos de redução em -0,52 e -0,58 V (vs. SCE), com limites de detecção (LOD) de 0,17 e de 0,03 &micromol L-1, respectivamente. O pico em -0,58 V mostrou-se mais sensível e foi escolhido para determinar o FA nas formulações farmacêuticas Folacin&reg, Afopic&reg e Folifolim&reg, com resultados concordantes com o método oficial baseado na Cromatografia líquida de alta eficiência (HPLC), em 95% de confiança, segundo o teste t-Student. O MIP-FA mostrou-se mais seletivo que o polímero sem impressão molecular (NIP-DCF) frente às interferências do metotrexato (MTX), porem o ácido ascórbico (AA), ácido úrico (UA) e dopamina (DA) mostraram interferências, em relação aos grupos funcionais presentes nessas espécies, com forte influência da rigidez estrutural e da mobilidade rotacional de tais grupos. Outro MIP foi sintetizado com impressão para DCF. A voltametria cíclica mostrou que o DCF apresenta pico irreversível de oxidação em + 0,83 V (vs. SCE), na primeira varredura e picos reversíveis de redução em +0,40 e +0,65 V (vs. SCE), a partir da segunda varredura, com respectivos processos de oxidação em +0,27 e +0,58 V (vs. SCE). Foi desenvolvido um procedimento analítico para determinação do fármaco em formulações comerciais, usando DPAdASV, após otimização dos parâmetros tais como composição de MIP no sensor (2,5%, m/m), tempo de acumulação (300 s) e potencial de pré-concentração (+0,2 V), a = 50 mV, ν = 10 mV s-1 em ácido perclórico pH condicional (pHcond) = 1,6, com uma região linear entre 0,010 e 0,20 nmol L-1 e LOD de 0,99 nmol L-1 para o pico anódico em +0,8 V (vs. SCE). O DCF foi determinado nas formulações farmacêuticas Biofenac&reg, Medley&reg e Voltaren&reg e em urina sintética. O MIP-DCF se mostrou relativamente seletivo ao sinal do DCF, mesmo na presença dos interferentes como ácido meclofenâmico (AMCFN) e ácido mefenâmico (AMFN), os quais apresentam grande semelhança estrutural e funcional em relação ao analito. Deve-se tomar cuidado ao estender o intervalo de potencial operacional para o GPU, neste meio de ácido perclórico, para evitar ativação de grupos funcionais do grafite e/ou da PU. / In this work methacrylate molecularly imprinted polymers (MIP) were prepared using folic acid (FA) as well as diclofenac (DCF) templates. These MIPs were used in the modification of graphite-polyurethane (GPU) composites in order to evaluate the performance of the resulting electrodes in the determination of the templates in pharmaceutical formulations and to estimate the sensitivity and selectivity of the resulting devices joined to the innovation of using the composites in such development regarding these analytes. In the case of FA, MIPs were prepared with this relatively large and containing multiple functional groups, to evaluate the effect of such characteristics in the performance of the sensor. First of all exploratory experiments were performed using cyclic votammetry (CV) in which the FA presented an irreversible oxidation peak at + 0.80 V (vs. SCE) and reversible reductions peaks at -0.40 and -0.65 V (vs. SCE) with respective oxidation at -0.33 and -0.49 V (vs. SCE). An analytical procedure was developed based on differential pulse voltammetry (DPV), after optimizing parameters such as MIP composition in the sensor (2.5%, m/m), pulse amplitude (a = 50 mV), scan rate (ν = 10 mV s-1) and supporting electrolyte (acetate, pH = 4.5). In such procedure was obtained a linear dynamic range from 0.6 to 2.0 &micromol L-1 for both DPV reduction peaks at -0.52 and -0.58 V (vs. SCE), with limit of detection (LOD) of 0.17 and 0.03 &micromol L-1, respectively. As the second on was more sensitive it was chosen for the determination of FA in the commercial pharmaceutical formulation Folacin&reg, Afopic&reg and Folifolim&reg,with results that agreed with those from the official HPLC procedure within 95% confidence level according to the t-Student test. The MIP-FA was more selective than the non-imprinted polymer (NIP-DCF) in relation to the interference of metotrexate (MTX), however ascorbic acid (AA), uric acid (UA) and dopamine (DA) revealed significant interferences regarding the functional groups present in these species, with strong influence from the structural rigidity of the molecule that plays an important role in the rotational mobility of these groups. Another MIP was synthesized with DCF as a template. Cyclic voltammetry demonstrated that the DCF presented a single irreversible oxidation peak at + 0.83 V (vs. SCE) in the first scan, and two reversible reduction peaks at +0.40 and +0.65 V (vs. SCE) with respective oxidation at +0.27 and +0.58 V (vs. SCE), from the second scan. A DPAdASV procedure was also developed for the determination of DCF in commercial formulations after optimizing some experimental parameters such as MIP composition in the sensor (2.5%, m/m), accumulation time (300 s) and potential (+0.2 V), a = 50 mV, v = 10 mV s-1 and supporting electrolyte (perchloric acid pHcond = 1.6). A linear dynamic range from 0.010 to 0.20 nmol L-1 and a LOD of 0.99 nmol L-1 were observed for the anodic peak at +0.8 V (vs. SCE). Then the DCF was determined in the commercial formulations Biofenac&reg, Medley&reg and Voltaren&reg and also in synthetic urine samples. The MIP-DCF sensor showed to be selective regarding the DCF signal even in the presence of meclophenamic acid (AMCFN) and mefenamic acid (AMFN), which present structural and functional similarity when compared with the analyte. Care must be taken when using the GPU in extreme potential windows in the perchloric acid medium, to avoid activation of functional groups in the polymer.
30

Molecularly imprinted polymer sensor systems for environmental estrogenic endocrine disrupting chemicals

Ntshongontshi, Nomaphelo January 2018 (has links)
Philosophiae Doctor - PhD (Chemistry) / There is growing concern on endocrine disrupting compounds (EDCs). The presence of drugs in water supplies was first realized in Germany in the early 1990s when environmental scientists discovered clofibric acid. Clofibric acid has the ability to lower cholesterol in ground water below a water treatment plant. Endocrine disrupting compounds can be defined as those chemicals with the ability to alter daily functioning of the endocrine system in living organisms. There are numerous molecules that are regarded or referred to as EDCs such as but not limited to organochlorinated pesticides, industrial chemicals, plastics and plasticizers, fuels, estrogens and many other chemicals that are found in the environment or are in widespread use. 17?- estradiol is the principal estrogen found in mammals during reproductive years. Estriol is produced in large quantities during pregnancy. 17?-estradiol is the strongest, estriol the weakest. Estriol is water soluble, estrone and estradiol are not. Although estrogen is produced in women they are also at risk of over exposure to estrogen. Pesticides are extensively used today in agricultural settings to prevent and control pests. Various pesticides, including banned organochlorines (OCs) and modern non-persistent pesticides, have shown the ability to disrupt thyroid activity, disturbing the homeostasis of the thyroid system. Because these EDCs have adverse effects on health of both human and wildlife, it is imperative to develop viable costeffective analytical methods for the detection of these EDCs in complicated samples and at very low concentrations. Very high selectivity towards particular compounds is a very important property for the suitability of a detection method. This is because these compounds mostly coexist in complex matrices which makes the detection of a specific compound very challenging. It is paramount to develop highly sensitive and selective methods for the detection of these estrogens and phosphoric acid-based pesticides at trace levels. / 2021-08-31

Page generated in 0.0699 seconds