• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 14
  • 14
  • 11
  • 9
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation and design of hybrid geothermal heat pump systems

Chiasson, Andrew D. January 2007 (has links)
Thesis (Ph.D.)--University of Wyoming, 2007. / Title from PDF title page (viewed on June 17, 2009). Includes bibliographical references (p. 167-178).
2

Ground source heat pump system models in an integrated building and ground energy simulation environment

Garber, Denis January 2014 (has links)
No description available.
3

Simulation of a vertical ground-coupled heat pump system with optimal ground loop design

Adivi, Krishna C. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains ix, 92 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 72-75).
4

Finite element modelling of thermal piles and walls

Rui, Yi January 2015 (has links)
No description available.
5

Computer modelling and simulation of geothermal heat pump and ground-coupled liquid desiccant air conditioning systems in sub-tropicalregions

Lee, Chun-kwong., 李振光. January 2008 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
6

Computer modelling and simulation of geothermal heat pump and ground-coupled liquid desiccant air conditioning systems in sub-tropical regions

Lee, Chun-kwong. January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 177-192) Also available in print.
7

Solar heat pump systems for heating applications : Analysis of system performance and possible solutions for improving system performance

Poppi, Stefano January 2017 (has links)
Solar heat pump systems (SHPs) are systems that combine solar energy and heat pumps. SHPs have been investigated for several decades and have been proven to increase the share of renewable energy and reduce electric energy demand in residential heating applications. Many solar thermal heat pump systems have become market-available in recent years; however these systems are still not widely employed in the residential sector. This is due mainly to the high initial costs (investment and installation costs) of solar thermal heat pump systems, which limits their cost-effectiveness. Enhancing cost-effectiveness of solar thermal heat pump systems is necessary for a more effective and broader market penetration. In this thesis, solar thermal and photovoltaic systems combined with heat pumps for heating applications are treated. The overall aims of the thesis are to: 1) investigate techno-economics of SHPs and 2) investigate possible solutions for improving system performance of a reference solar thermal and heat pump system for residential heating applications. In the first part of the thesis, the influence of climatic boundary conditions on economic performance of SHPs has been investigated by means of: a) an economic comparison of SHPs found in the relevant literature and b) system simulations of the reference solar thermal heat pump system. In the second part of the thesis, potential solutions for improving system performance of the reference solar thermal heat pump system with limited change in system’ costs are investigated. A systematic approach was used for investigating cost-effectiveness of the system improvements in the reference system. Based on results of the cost-effectiveness analysis, some of the investigated system improvements were chosen for being included in the design of a novel solar thermal and air source heat pump system concept. The novel system was designed for a house standard with relatively high operating temperatures (55°C/45°C) in the space heating distribution system and for high space heating demand (123 kWh/m2·year). Finally, the thesis ends with a cost-effectiveness analysis of the novel system. / <p>QC 20170918</p> / MacSheep / iNSPiRe
8

Study of high flash point ethyl alcohol-based secondary fluids applied in Ground Source Heat Pumps systems

Carrion Domenech, Luis Enrique January 2019 (has links)
Ethyl alcohol (ethanol) as secondary fluids is very popular as heat transfer fluid for indirect refrigeration system with ground source heat pump systems (GSHP) in several countries such as Sweden, Norway, Switzerland, Finland and other European countries. There have been several researches about the future ofthe refrigeration sector, refrigerants and refrigeration systems. Moreover, strict regulations such as F-gasregulation and Kigali Amendment forcing a phase down of many current widely used high global warming potential (GWP) refrigerants, i.e. R134a or R410A. Therefore, secondary refrigeration systems and their working fluids are expected to play a key role in order to minimize the refrigerant charge in the systems, reduce the indirect refrigerant leakages as well as increase the safety during operation. The aim of this thesis is to investigate the effect different additives to increase the flame point together with ethanol-based secondary fluids and validate their thermophysical properties by comparing them with reference values for pure ethanol water solutions. The study aims to design a new commercial ethyl alcohol-based product for GSHP system that could replace existing ones in the Swedish market and could workwith natural or flammable low GWP refrigerants. Different high flash point additives were tested such as 1-propyl alcohol, n-butyl alcohol, glycerol andpropylene carbonate. Thermophysical properties were investigated and a GSHP model in Excel was created in order to assess the energy performance of the resulted blends. After screening different blends and assessing the energy performance, glycerol as additive in low concentration seems to be the future for the ethyl alcohol-based secondary fluids because of its high flashpoint (160ºC) that will reduce the flammability risk associated to ethyl alcohol blends, the low viscosity (by 12% lower compared to pure ethyl alcohol blends) that help reduce pumping power by 4.5% compared topure ethyl alcohol blends. Moreover, ethyl alcohol and glycerol blend showed the lost in heat transfer coefficient by 4% lower compared to pure ethyl alcohol blends due to lower thermal conductivity compared to pure ethyl alcohol blends. Finally, it is a rather cheap and natural product which has no problem related to corrosion since ethyl alcohol and glycerol are less corrosive than water. Although, flash point test was not conducted so there is no data regarding the flash point, it is expected the flash point is increased due to the high flash point of glycerol compared to ethyl alcohol or other possible additives. Therefore, it is expected that the flammability risk associated to ethyl alcohol-based secondary fluids is reduced. / Etylalkohol (etanol) som köldbärare är mycket populärt som värmeöverföringsvätska för indirekt kylsystemmed bergvärmepumpsystem (BVP) i Sverige, Norge, Schweiz, Finland och andra europeiska länder. Fleraundersökningar har gjorts om kylsektorns framtid, köldmedier och kylsystem. Dessutom strängaförordningar som F-gas förordning och Kigali- förordning tvingar en utfasning av många nuvarande allmäntanvända köldmedier med den höga globala uppvärmningspotentialen (GWP), dvs. R134a eller R410A. Därför förväntas det att kylsystem och deras köldbärare spela en nyckelroll för att minimera köldmediumsmängd i systemen, minska de indirekta köldmedieläckage och öka säkerheten under drift. Syftet med detta examensarbete är att undersöka effekten av olika tillsatser för att öka flammanpunkten tillsammans med etanolbaserade köldbärare och validera deras termofysikaliska egenskaper genom att jämföra dem med referensvärden för rena etanolvattenlösningar. Studien syftar till att utforma en nykommersiell etylalkoholbaserad produkt för BVP-system som skulle kunna ersätta befintliga produkter på den svenska marknaden och kan arbeta med naturliga eller brandfarliga köldmedier med låg GWP. Olika tillsatser med hög flampunkt testades såsom 1-propylalkohol, n-butylalkohol, glycerol och propylenkarbonat. Termofysikaliska egenskaper undersöktes och en BVP-modell i Excel skapades för att bedöma energiprestanda för olika blandningarna. De erhållna resultaten för olika blandningar visar att glycerol i en låg koncentration som tillsats kan vara framtidens additiv för de etylalkoholbaserade köldbärare på grund av dess höga flampunkt (160 ºC) som förmodligen kan minska brandrisken för etylalkoholblandningar. Dessutom hade glycerol och etanolblandningar den lägsta viskositeten (c.a.12% lägre jämfört med ren etylalkoholblandningar) som bidrar tillen minskning av pumpeffekten med c.a. 4,5% jämfört med rena etylalkoholblandningar. Däremot visade etylalkohol och glycerol blandningen c.a. 4% lägre värmeöverövergångstal jämfört med de rena etylalkoholblandningar på grund av lägre värmeledningsförmåga jämfört med ren etylalkoholblandningar. Slutligen är glycerol en ganska billig och naturlig produkt som inte har några korrosionsproblem eftersom etylalkohol och glycerol är mindre frätande än vatten. Även om flampunkttest inte genomfördes i projektet, förväntas det att flampunkten ökas lite på grund av den höga flampunkten av glycerol jämfört med etylalkohol och andra tillsatser. Därför förväntas det att brännbarhetsrisken förknippad med etylalkoholbaserade köldbärare reduceras.
9

Evaluation of energy usage in the chemical industry and effective measures to reduce energy losses

Crespo, Raul Jose 02 May 2009 (has links)
Energy consumption is one of the major concerns in the current environment, not only because of the limited availability of non-renewable fuels, but also due to the high cost and the pollution generated by energy production. In general, industries consume large quantities of electricity, fuels and other types of energy. Among the industries, the chemical industry is one of the highest energy consumers because of the nature of its processes. This fact makes the chemical industry one of the best candidates for the study and evaluation of different technologies to improve the efficiency of the energy use without affecting the productivity and quality of their processes and products. This thesis analyzes the energy consumption in the chemical industry and provides recommendations to increase the energy efficiency of the critical systems utilized in this industry. Different methods to reduce the energy losses during generation and transmission, the use of waste heat for improving energy efficiency, and several analysis tools to help in evaluating the potential energy and cost savings for each facility are also discussed in this thesis. Several case studies are reviewed to demonstrate the effectiveness of the energy savings recommendations and tools presented in this investigation.
10

Effects of ground-coupled heat pumps on hydrogeologic systems : Ball State University / Effects of ground coupled heat pumps on hydrogeologic systems

Dunn, Marsha E. 20 July 2013 (has links)
In 2009 Ball State University began construction on the nation’s largest ground-source geothermal system in attempt to reduce its environmental impacts and heating/cooling expenses. Since late November 2011, half of the geothermal system has been operational. Due to only partial geothermal use and a warm winter in 2011, thermal increases can be seen throughout the Phase 1 fields. After system initiation in 2011, an average temperature increase of 4.33°C has been observed in the bottom 80-120+ meters in the middle of the South Field, while no increase was found in the southern-edge well of the North Field. To evaluate thermal increases, hydraulic characteristics were gathered including groundwater flow direction, hydraulic gradients and hydraulic conductivities. Varying temperatures throughout the area may affect the groundwater geochemistry. Geochemical results indicate a calcium-bicarbonate facies. / Geothermal well field construction -- Study site -- Methods -- Results -- Discussion. / Department of Geological Sciences

Page generated in 0.0657 seconds