1 |
Adressage et contrôle de nanosources optiques par plasmonique intégrée ou fibrée / Addressing and control of optical nanosources by integrated or fibered plasmonicsBarthes, Julien 18 June 2015 (has links)
Les plasmons polaritons de surface, modes supportés par des nanostructures métalliques permettent de confiner la lumière à des échelles sub-longueurs d’onde. En s’affranchissant de la limite de diffraction, ces modes constituent des pistes intéressantes pour l’adressage et le contrôle de nanosources optiques (molécules, boites quantiques...). Par exemple, un nanofil métallique constitue un guide plasmonique unidimensionnel qui permet d’exciter une nanosource ou encore de coupler deux émetteurs avec des applications possibles pour la réalisation de composants nano-optiques intégrés. En revanche, la perte d’énergie dans le métal diminue la portée de ces dispositifs. Une stratégie consiste donc à travailler sur une configuration hybride : plasmonique et fibre optique, pour coupler efficacement l’émission de la nanosource à un mode de fibre. Ceci ouvre la voie à la réalisation d’une nanosource fibrée de manipulation aisée pouvant être utilisée comme source de photon unique pour la cryptographie quantique ou plus simplement comme une sonde de champ proche optique haute résolution.Après une étude des principaux canaux de relaxation d’une molécule fluorescente à proximité d’un guide plasmonique, nous discutons de l’optimisation du couplage entre l’émetteur et le guide plasmonique en jouant sur sa forme et la longueur d’onde d’émission. Ensuite, nous nous intéressons au comportement d’une structure hybride composée d’une fibre optique étirée et métallisée. Enfin, nous montrons que l’optimisation du transfert d’énergie d’une molécule fluorescente en présence de cette structure permet de collecter plus de 50% de l’énergie lumineuse d’un nano-émetteur posé sur un substrat vers une fibre optique par le truchement d’un plasmon. / Surface plasmon polariton (SPP) can confine light on subwavelength dimensions. Since they are not diffraction limited, they are of great interest for addressing and controlling optical nanosources. For example, a metal nanowire defines 1D plasmonic waveguide with a great potential for either addressing or coupling quantum emitters. Therefore, SPP opens great opportunities for integrated optical applications. However, SPP suffer from ohmic losses that jeopardize the applications of plasmonic components. In this context, we study the possibilities provided by an hybrid plasmonic-photonicstructure to couple efficiently an emitter to a fiber mode. Such a structure paves the way for fibered single photon nanosource or high resolution optical probe. In this thesis manuscript, we first study the coupling rate between a fluorescent molecule and a metallic nanowire thanks to Green’s dyad formalism. This leads us to distinguish the different relaxation channels and the enhancement of the energy transferred into the plasmonic guided mode by optimizing the shape of the guide (crystalline nano-wire,slow modes). Then, we investigate the energy propagation in a metal coated taperedoptical fiber. Finally, we achieve an optimal configuration for which more than 50% of the energy emitted by a quantum emitter laid on a substrat is transferred into an optical fiber.
|
2 |
Design, fabrication and characterization of plasmonic components based on silicon nanowire platformLou, Fei January 2014 (has links)
Optical interconnects based on CMOS compatible photonic integrated circuits are regarded as a promising technique to tackle the issues traditional electronics faces, such as limited bandwidth, latency, vast energy consumption and so on. In recent years, plasmonic integrated components have gained great attentions due to the properties of nano-scale confinement, which may potentially bridge the size mismatch between photonic and electronic circuits. Based on silicon nanowire platform, this thesis work studies the design, fabrication and characterization of several integrated plasmonic components, aiming to combine the benefits of Si and plasmonics. The basic theories of surface plasmon polaritons are introduced in the beginning, where we explain the physics behind the diffraction-free confinement. Numerical methods frequently used in the thesis including finite-difference time-domain method and finite-element method are then reviewed. We summarize the device fabrication techniques such as film depositions, e-beam lithography and inductively coupled plasma etching as well as characterization methods, such as direct measurement method, butt coupling, grating coupling etc. Fabrication results of an optically tunable silicon-on-insulator microdisk and III-V cavities in applications as light sources for future nanophotonics interconnects are briefly discussed. Afterwards we present in details the experimental demonstrations and novel design of plasmonic components. Hybrid plasmonic waveguides and directional couplers with various splitting ratios are firstly experimentally demonstrated. The coupling length of two 170 nm wide waveguides with a separation of 140 nm is only 1.55 µm. Secondly, an ultracompact polarization beam splitter with a footprint of 2×5.1 μm2 is proposed. The device features an extinction ratio of 12 dB and an insertion loss below 1.5 dB in the entire C-band. Thirdly, we show that plasmonics offer decreased bending losses and enhanced Purcell factor for submicron bends. Novel hybrid plasmonic disk, ring and donut resonators with radii of ~ 0.5 μm and 1 μm are experimentally demonstrated for the first time. The Q-factor of disks with 0.5 μm radii are , corresponding to Purcell factors of . Thermal tuning is also presented. Fourthly, we propose a design of electro-optic polymer modulator based on plasmonic microring. The figure of merit characterizing modulation efficiency is 6 times better comparing with corresponding silicon slot polymer modulator. The device exhibits an insertion loss below 1 dB and a power consumption of 5 fJ/bit at 100 GHz. At last, we propose a tightly-confined waveguide and show that the radius of disk resonators based on the proposed waveguide can be shrunk below 60 nm, which may be used to pursue a strong light-matter interaction. The presented here novel components confirm that hybrid plasmonic structures can play an important role in future inter- and intra-core computer communication systems. / <p>QC 20140404</p>
|
3 |
Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticosMota, Achiles Fontana da 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (τ) and quantum efficiency (η). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce τ, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of η . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k≤k0) aiming at increasing η. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and η as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (ηeff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize ηeff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize ηeff for a specified tenfold increase of Peff. This procedure allowed ηeff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and η maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (τ) e a eficiência quântica (η). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir τ, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de η. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k≤k0) visando o aumento de η. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e η em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (ηeff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de ηeff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar ηeff para um aumento de dez vezes de Peff. Este procedimento permitiu que o ηeff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e η (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
|
4 |
Modeling and analysis of hyperbolic metamaterials for controlling the spontaneous emission rate and efficiency of quantum emitters / Modelo e análises de metamateriais hiperbólicos para o controle da taxa de emissão espontânea e eficiência de emissores quânticosAchiles Fontana da Mota 11 February 2019 (has links)
In the past few years, intensive research efforts have been devoted to studying new approaches to controlling the photon emission of quantum emitters (QEs), especially for telecommunication applications. These approaches rely on tailoring the QE\'s radiation, usually assessed via well-known figures-of-merit such as lifetime (τ) and quantum efficiency (η). Controlling the QE\'s photon emission is important because the faster its photons are emitted, the greater is the number of times it returns to the excited state per second. Therefore, it is crucial to create additional decay channels to reduce τ, which necessarily requires increasing the Purcell factor (P). One of the most promising approaches to increase P involves a new class of metamaterials, known as hyperbolic metamaterials (HMM). This class of materials exhibits pronounced anisotropy, with the parallel and perpendicular permittivity tensor elements (with respect to the anisotropy axis) presenting opposite signs, resulting in an open hyperboloidal isofrequency surface (IS). This unusual IS shape leads to the most outstanding feature of HMMs, namely, the existence of photonic modes with wavenumber (k) much larger than those in free-space (k0), known as high-k modes. By engineering these modes, it is possible to manipulate the HMM photonic density of states (PDoS), thus controlling the QE\'s radiation parameters. The simplest approach to designing HMM is by means of a planar stack of alternating thin metal and dielectric layers. However, the finite thickness of these layers induces spatial dispersion, making the extraction of effective parameters (homogenization) of these media a challenging task. In this context, we propose in this thesis a new constitutive parameter retrieval approach that takes spatial dispersion into account for all electromagnetic parameters of the medium. We demonstrate that the real part of the dispersion curve flattens out (correspondingly with a large imaginary part) because of the absence of propagating modes inside the metamaterial. This flat region is strongly dependent on the layer thicknesses and is a direct manifestation of spatial dispersion. Moreover, we demonstrate that the QE\'s lifetime calculation is overestimated if this effect is not taken into account in the homogenization procedure, which is detrimental for telecommunication applications. Moreover, we demonstrate how to enhance P by a factor greater than 100 with the use of HMMs. However, most of the QE dissipated power couples into the HMM as high-k modes (which do not propagate in free-space). Therefore, the energy is thermally dissipated inside the HMM with a consequent reduction of η . Some authors have resorted to nano-patterned HMMs (NPHM) to convert the high-k modes into free-space modes (k≤k0) aiming at increasing η. However, much of the NPHMs designs still rely on computationally costly three dimensional (3D) numerical simulations. Thus, we also propose in this thesis a new semi-analytical method to model, both in two- and three-dimensions (2D and 3D, respectively), the radiation emission of QEs interacting with nano-patterned structures. The low computational cost of this method makes it attractive for mapping P and η as function of the QE and NPHM relative position. This mapping is a helpful tool to understand the decay behavior of the whole system since QEs are arbitrarily distributed and oriented inside the NPHM. The analytically calculated decay curve allows the systems effective quantum efficiency (ηeff) and Purcell factor (Peff) to be directly obtained assuming multiple arbitrarily distributed electromagnetic sources. In this sense, we propose here a new procedure to optimize the NPHM geometrical parameters to maximize ηeff while achieving the desired Peff. We apply the proposed model to an NPHM composed of nine Ag/SiO2 layers, with the polymer host layer embedded with Rhodamine 6G, to maximize ηeff for a specified tenfold increase of Peff. This procedure allowed ηeff to be increased by 69% and 170% for one- and two-dimensional nano-patterning, respectively. Moreover, the time required to build the P and η maps (used in the calculation of the decay behavior) is reduced by approximately 96% when compared to those numerically calculated via FDTD. This procedure paves the way to the realization of new high-speed and efficient light sources for telecommunication applications. / Nos últimos anos, intensivo esforço tem sido devotado para o estudo de novas método para o controla da missão de fótons de emissores quânticos (EQs), especialmente para aplicações em telecomunicações. Estes métodos dependem da adaptação da radiação dos EQs, geralmente avaliadas por meio das bem conhecidas figuras de mérito, como o tempo de meia vida (τ) e a eficiência quântica (η). O controle da emissão de fótons é importante pois quanto mais rápido os fótons são emitidos, maior é o número de vezes que o EQ retorna ao seu estado excitado por segundo. Portanto, é crucial criar canais de decaimento adicionais para reduzir τ, o que necessariamente requer o aumento do fator de Purcell (P). Uma das abordagens mais promissoras para aumentar P envolve uma nova classe de metamateriais, conhecida como metamateriais hiperbólicos (MHs). Esta classe de materiais apresenta pronunciada anisotropia, onde os elementos paralelo e perpendicular do tensor de permissividade (em relação ao eixo de anisotropia) apresentam sinais opostos, resultando em uma superfície de isofrequência (SI) hiperboloidal aberta (IS). Essa forma incomum de SI leva à característica mais marcante dos MHs, a existência de modos fotônicos com número de onda (k) muito maior do que aqueles no espaço livre (k0), conhecidos como modos alto-k. Ao manipular esses modos, é possível manipular a densidade de estados fotônicos (DES) dos MHs, controlando assim os parâmetros de radiação do QE. A abordagem mais simples para a criação de MHs é por meio de uma pilha plana de camadas metálicas e dielétricas alternadas. Entretanto, a espessura finita dessas camadas induz a dispersão espacial, tornando a extração de parâmetros efetivos (homogeneização) destes meios uma tarefa desafiadora. Neste contexto, propomos nesta tese uma nova abordagem de recuperação de parâmetros constitutivos a dispersão espacial de todos os parâmetros eletromagnéticos do meio é levada em consideração. Nós demonstramos que a parte real da curva de dispersão se aplaina (correspondentemente com uma grande parte imaginária) devido à ausência de modos propagantes dentro do metamaterial. Esta região plana é fortemente dependente das espessuras das camadas e é uma manifestação direta da dispersão espacial Além disso, nós mostramos que se a dispersão espacial não for corretamente considerada no processo de homogeneização, o tempo de meia vida do EQ pode ser superestimado, o que é prejudicial para aplicações de telecomunicações. Além disso, demonstramos como melhorar P por um fator maior que 100 com o uso de MHs. a maior parte da potência dissipada pelos EQs são acopladas nos MHs como modos de alto-k (que não se propagam no espaço livre). Portanto, a energia é dissipada termicamente no interior do MH, resultando em uma redução de η. Alguns autores recorreram a MHs nano-estruturados (MHNE) para converter os modos alto-k em modos de espaço livre (k≤k0) visando o aumento de η. No entanto, muitos dos projetos do NPHM ainda dependem de simulações numéricas tridimensionais (3D) computacionalmente dispendiosas. Assim, também propomos nesta tese um novo método semi-analítico para modelar, tanto em duas como em três dimensões (2D e 3D, respectivamente), a emissão de radiação de EQs interagindo com estruturas nano-estruturadas. O baixo custo computacional deste método faz com que seja atrativo para o mapeamento de P e η em função da posição relativa do EQ e do MHNE. Esse mapeamento é uma ferramenta útil para entender o comportamento de decaimento de todo o sistema, já que os EQs são arbitrariamente distribuídos e orientados dentro do MHNE. A curva de decaimento calculada analiticamente permite que a eficiência quântica efetiva do sistema (ηeff) e o fator de Purcell (Peff) sejam obtidos diretamente, assumindo múltiplas fontes eletromagnéticas arbitrariamente distribuídas. Neste sentido, propomos aqui um novo procedimento para otimizar os parâmetros geométricos do MHNE visando a maximização de ηeff enquanto Peff é aumentado à um valor desejado. Aplicamos o modelo proposto a um MHNE composto por nove camadas de Ag/SiO2, com a camada de polímero embutida com Rodamina 6G, visando maximizar ηeff para um aumento de dez vezes de Peff. Este procedimento permitiu que o ηeff fosse incrementado em 69% e 170% para nano-estruturas uni e bidimensionais, respectivamente. Além disso, o tempo necessário para construir os mapas P e η (utilizados no cálculo da curva de decaimento) é reduzido em aproximadamente 96% quando comparado com os calculados numericamente via FDTD. Este procedimento abre caminho para o desenvolvimento de novas fontes de luz de alta velocidade e eficiência para aplicações de telecomunicações.
|
Page generated in 0.0348 seconds