Spelling suggestions: "subject:"surge"" "subject:"puras""
11 |
Experimental Study of the Heat Transfer on a Squealer Tip Transonic Turbine Blade with Purge FlowPhillips, James Milton Jr. 14 January 2014 (has links)
The objective of this work is to examine the flow structure and heat transfer distribution of a squealer tip rotor blade with purge flow cooling and provide a comparison with a basic flat tip rotor blade without purge flow cooling, under transonic conditions and high inlet free stream turbulence intensity. The blade design was provided by Solar Turbines Inc., and consists of a double squealer around the pressure and suction sides, two purge flow blowing holes located downstream of the leading edge and mid-chord, four ribs in the mid-chord region and a trailing edge bleeder exiting on the pressure side. Blade cavity depth is 2.29 mm (0.09 in.) and the total blade turning angle is 107.5°. Tests were performed in a blow-down facility at a turbulence intensity of 12%, in a seven bladed 2-D linear cascade at transonic conditions. Experiments were conducted at isentropic exit Mach numbers of 0.85 and 1.05, corresponding to Reynolds numbers based on axial chord of 9.75x10^5 and 1.15x10^6, respectively, and tip clearance gaps of 1% and 2% of the scaled engine blade span. A blowing ratio of 1.0 was used in the squealer tip experiments. Detailed heat transfer coefficient and film cooling effectiveness distributions were obtained using an infrared thermography technique, while oil flow visualization was used to investigate the flow patterns in the blade tip region.
With the addition of a squealer tip, leakage flow was found to decrease, as compared to a flat tip blade. With increasing tip clearance gap, the heat transfer coefficients within the cavity and along the squealer rim were found to decrease and increase, respectively. Film cooling effectiveness decreased with increasing tip clearance gap and was mainly observed within the squealer cavity. The maximum heat transfer coefficient was observed on the leading edge, however, comparatively large values were observed on the mid-chord ribs. The presence of the ribs, greatly affected the flow structure and heat transfer distributions within the cavity and downstream towards the trailing edge. / Master of Science
|
12 |
Contribution à l’estimation des potentialités de migration des essences forestières face au changement climatique : Le cas du sapin pectiné (Abies alba Miller) sur le Mont Ventoux / Contribution to the estimation of forest tree migration potentialities in front of climate change : The case of silver fir (Abies alba Miller) on Mont VentouxAmm, Annabelle 25 March 2011 (has links)
Le changement climatique (CC) actuel, très rapide, va imposer aux espèces de faire évoluer leurs traits d’histoire de vie ou leur aire de répartition. En raison de leur long cycle reproductif, les arbres pourraient ne pas avoir la capacité à s’adapter suffisamment vite et leur aptitude à la migration devrait être déterminante. Les vitesses de colonisation des essences forestières lors de l'holocène ont fortement été revues à la baisse aux cours de la dernière décennie (quelques centaines contre quelques centaines de m/an). Dans ce contexte et en s'appuyant sur le sapin pectiné (Abies alba Mill.) en tant qu'espèce modèle nous avons étudié les principaux facteurs conditionnant l'aptitude à la migration. A partir de placettes de régénérations situées sur la face nord du Mont Ventoux, nous avons estimé la dispersion et le recrutement du sapin, en intégrant les sources de graines et les principales caractéristiques environnementales. La dispersion a également été estimée à partir de données génétiques. Dans les deux cas, les distances de dispersion sont de l’ordre du décamètre. La diversité génétique et l'évolution démographique ont été étudiées au sein de la régénération de sapins afin de tester l'hypothèse de purge de consanguinité. L'espèce présente en effet un régime de reproduction mixte, et la part d'autofécondation, à laquelle s'ajoute la reproduction entre individus consanguins, est à l’origine de l'excès d’homozygotie observé généralement dans la régénération, excès diminuant avec l’âge sous l’action d'une probable purge des individus les plus homozygotes. Les semis étudiés ne présentent pas un fort excès d’homozygotie, néanmoins, les individus les plus homozygotes meurent préférentiellement. Enfin, un modèle de dynamique forestière intégrant les processus, qui contrôlent la migration, a été implémenté afin d'évaluer la compatibilité entre la migration des espèces à long cycle de vie et le CC. Les premiers résultats de nos simulations indiquent que le sapin n’est pas capable de migrer aussi vite que s’opère le réchauffement. / Current climate change (CC), really fast, will impose species to change their history life traits or their distribution range. Trees may not be able to adapt because of their long reproductive cycles hence their potentialities of migration is decisive. Past tree migration rates, during Holocene, were revised in downward these rates (several decameters against several hundred m/year). In this context, and focusing on silver fir (Abies alba Mill.) as “model species”, we studied main factors decisive for migration potentialities. Using regeneration plots, installed on Mont Ventoux north face, silver fir dispersal and seedling recruitment have been studied, including seed sources and main environmental characteristics. Dispersal was also estimated using genetic data. For both cases, dispersal distances are of the order of decameters. This species shows a mixed mating system, and auto-fertilization rate, plus reproduction between half-sibs, induces homozygosity excess, generally observed in regeneration, this excess decreases probably under the purge of inbred individuals. Our results show that seedlings do not have show homozygosity excess, however inbred seedlings die preferentially. Lastly, we constructed a model of forest dynamics that includes processes that determine migration, in order to evaluate the concordance between long life cycle species and CC. Our results show that silver fir does not migrate as fast as climate warming velocity.
|
13 |
Characterization and Control of Molecular Contaminants on Oxide Nanoparticles and in Ultra High Purity Gas Delivery Systems for Semiconductor ManufacturingWang, Hao January 2013 (has links)
Molecular contaminants on the surface of nanoparticles (NPs) are critical in determining the environmental safety and health (ESH) impacts of NPs. In order to characterize the surface properties that relate to adsorption and desorption interactions, a method has been developed for studying the dynamic interactions of adsorbing species on NP samples. The results are analyzed using a process simulator to determine fundamental properties such as capacity, affinity, rate expressions, and activation energies of NP interactions with contaminants. The method is illustrated using moisture as a representative model compound and particles of SiO₂, HfO₂, and CeO₂, which are three oxides used in semiconductor manufacturing. The effect of particle size and temperature on the surface properties of porous oxide NPs was investigated. Infrared spectra peaks corresponding to the stretching vibration of water molecules were monitored by in-site Fourier transform infrared (FTIR) spectroscopy. These are related to the moisture concentration on the surface of NPs. A transient multilayer model was developed to represent the fundamental steps in the process. The thermal stability of adsorbed species and the strength of bonding to the surface were evaluated by determining the activation energies of the various steps. The results indicate that the surface interaction parameters are dependent on species, temperature, and particle size. SiO₂ has the highest adsorption capacity and therefore is most prone to the adsorption of moisture and similar contaminants. However, the affinity of the NPs for H₂O retention is highest for CeO₂ and lowest for SiO₂. As temperature decreases, NPs exhibit a higher saturated moisture concentration and are more prone to the adsorption of moisture and similar contaminants. Furthermore, smaller NPs have a higher saturated surface concentration and a slower response to purging and desorption. Factors contributing to the environmental and health impact of NPs (extent of surface coverage, capacity, and activation energy of retention) have been investigated during this study. The second objective of this study is to develop a method to measure and control the contamination in ultra-high-purity (UHP) gas delivery systems. Modern semiconductor manufacturing plants have very stringent specifications for the moisture content at the point-of-use, usually below several parts per billion (ppb). When the gas delivery system gets contaminated, a significant amount of purge time is required for recovery of the background system. Therefore, it is critical for high-volume semiconductor manufacturers to reduce purge gas usage as well as purge time during the dry-down process. A method consisting of experimental research and process simulations is used to compare steady-state purge (SSP) process of constant pressure and flow rate with the pressure-cycle purge (PCP) process of cyclic pressure and flow rate at a controlled interval. The results show that the PCP process has significant advantages over the SSP process under certain conditions. It can reduce the purge time and gas usage when the gas purity at point-of-use is the major concern. The process model is validated by data congruent with the experimental results under various operating conditions and is useful in conducting parametric studies and optimizing the purge process for industrial applications. The effect of key operational parameters, such as start time of PCP process as well as choice of PCP patterns has been studied.
|
14 |
Reducing Ultra-High-Purity (UHP) Gas Consumption by Characterization of Trace Contaminant Kinetic and Transport Behavior in UHP Fabrication EnvironmentsDittler, Roy Frank January 2014 (has links)
Trends show that the fraction of the world's population with electronic devices using modern integrated circuits is increasing at a rapid rate. To meet consumer demands: less expensive, faster, and smaller electronics; while still making a profit, manufacturers must shrink transistor dimensions while increasing the number of transistors per integrated circuit; a trend predicted by Gorden E. Moore more than 44 years prior. As CMOS transistors scale down in size, new techniques such as atomic-layer deposition (ALD) are used to grow features one atomic layer at a time. ALD and other manufacturing processes are requiring increasingly stringent purities of process gases and liquids in order to minimize circuit killing defects which reduces yield and drives up manufacturing cost. Circuit killing defects caused by impurity incursions into UHP gas distribution system can come from a variety of sources and one of the impurity transport mechanisms investigated was back diffusion; the transport of impurities against convective flow. Once impurity incursions transpire, entire production lines are shut down and purging with UHP gas is initiated; a process that can take months thus resulting in tens of millions of dollars in lost revenue and substantial environment, safety, and health (ESH) impacts associated with high purge gas consumption. A combination of experimental investigation and process simulation was used to analyze the effect of various operational parameters on impurity back diffusion into UHP gas distribution systems. Advanced and highly sensitive analytical equipment, such as the Tiger Optics MTO 1000 H2O cavity ring-down spectrometer (CRDS), was used in experiments to measure real time back diffusing moisture concentrations exiting an electro-polished stainless-steel (EPSS) UHP distribution pipe. Design and operating parameters; main and lateral flow rates, system pressure, restrictive flow orifice (RFO) aperture size, and lateral length were changed to impact the extent of back diffusing impurities from a venting lateral. The process model developed in this work was validated by comparing its predictions with data from the experiment test bed. The process model includes convection, molecular diffusion in the bulk, surface diffusion, boundary layer transport, and all modes of dispersion; applicable in both laminar and turbulent flow regimes. Fluid dynamic properties were directly measured or were obtained by solving Navier-Stokes and continuity equations. Surface diffusion as well as convection and dispersion in the bulk fluid played a strong role in the transport of moisture from vents and lateral branches into the main line. In this analysis, a dimensionless number (Peclet Number) was derived and applied as the key indicator of the relative significance of various transport mechanisms in moisture back-diffusion. Guidelines and critical values of Peclet number were identified for assuring the operating conditions meet the purity requirements at the point of use while minimizing UHP gas usage. These guidelines allowed the determination of lateral lengths, lateral diameters, flow rates, and restrictive flow device configurations to minimize contamination and UHP gas consumption. Once a distribution system is contaminated, a significant amount of purge time is required to recover the system background due to the strong interactions between moisture molecules and the inner surfaces of the components in a gas distribution system. Because of the very high cost of UHP gases and factory downtime, it is critical for high-volume semiconductor manufacturers to reduce purge gas usage as well as purge time during the dry-down process. The removal of moisture contamination in UHP gas distribution systems was approached by using a novel technique dubbed pressure cyclic purge (PCP). EPSS piping was contaminated with moisture, from a controlled source, and then purged using a conventional purge technique or a PCP technique. Moisture removal rates and overall moisture removal was determined by measuring gas phase moisture concentration in real time via a CRDS moisture analyzer. When compared to conventional purge, PCP reduced the time required and purge gas needed to clean the UHP gas distribution systems. However, results indicate that indiscriminately initiating PCP can have less than ideal or even detrimental results. An investigation of purge techniques on the removal of gas phase, chemisorbed, and physisorbed moisture, coupled with the model predictions, led to the testing of hybrid PCP. The hybrid PCP approach proved to be the most adaptable purge technique and was used in next phase of testing and modeling. Experiments and modeling progressed to include testing the effectiveness of hybrid PCP in systems with laterals; more specifically, laterals that are "dead volumes" and results show that hybrid PCP becomes more purge time and purge gas efficient in systems with increasing number and size of dead volumes. The process model was used as a dry-down optimization tool requiring inputs of; geometry and size, temperature, starting contamination level, pressure swing limits of inline equipment, target cleanliness, and optimization goals; such as, minimizing pure time, minimizing purge gas usage, or minimizing total dry-down cost.
|
15 |
The Purification Offering of Leviticus and the Sacrificial Offering of JesusVis, Joshua Marlin January 2012 (has links)
<p>The life, death, resurrection, and ascension of Jesus are not often read against the backdrop of the sacrificial system of Leviticus, despite the fact that the Letter to the Hebrews and other New Testament texts do exactly this. Until recently, Hebrew Bible scholars had little insight into the function of many of the sacrifices of Leviticus. However, over the last thirty years, Jacob Milgrom has articulated the purgative function of the purification offering of Leviticus, the principal sacrifice offered for wrongdoing. The blood of the purification offering, which contains the animal's ,<italic>nefesh</italic>, best understood as the animating force of the animal, acts as a ritual cleanser. Milgrom has insisted that the purification offering only cleanses the sanctuary, never the offerer. This conclusion likely has kept many New Testament scholars from seeing the impact this sacrifice had on various New Testament authors. Thus although Milgrom's work has had a profound impact on Hebrew Bible scholarship, it has had little effect on New Testament scholarship on the sacrifice of Jesus.</p><p>Using source criticism and a close reading of the relevant Hebrew Bible texts and New Testament texts, this study argues that the purification offering of Leviticus can purge the offerer, as well as the sanctuary. Moreover, the logic of the purification offering of Leviticus informs many New Testament texts on the sacrificial offering of Jesus. Leviticus demonstrates that there is a relationship between the Israelites and the sanctuary. The wrongdoings and impurites of the Israelites can stain the sanctuary and sacrificial procedures done in and to the sanctuary can purge the Israelites. The purgation of the offerer takes place in two stages. In the first stage, described in Lev 4:1-5:13, the offerer moves from being guilt-laden to being forgiven. In the second stage, outlined in Lev 16, the sanctuary is purged of the wrongdoings and impurities of the Israelites. The Israelites shift from being forgiven to being declared pure. The Israelites cannot be pure until the sanctuary is purged and reconsecrated.</p><p>The Letter to the Hebrews, along with other New Testament texts, articulates the same process and results for the sacrificial offering of Jesus. The emphasis in Hebrews and elsewhere in the New Testament is on the power (typically the cleansing power) of Jesus' blood. Jesus' death is necessary but insufficient. Hebrews clearly asserts that it was through the offering of Jesus' blood in the heavenly sanctuary that the heavenly things were cleansed, and more importantly, that believers were cleansed. Hebrews also articulates a two-stage process for the transformation of believers. In the first stage, believers are cleansed by Jesus' sacrificial offering in heaven. However, believers anticipate a final rest after Jesus' return when their flesh will be transformed as Jesus' flesh was after his resurrection. This transformation allows believers to dwell in harmony with and in proximity to God. The logic of the purification offering of Leviticus, then, informs the Letter to the Hebrews and other New Testament texts.</p> / Dissertation
|
16 |
Elite Management Strategies under Dictatorships and Their DeterminantsKim, Taekbin 05 1900 (has links)
This dissertation attempts to uncover systematic patterns regarding elite management in dictatorships. To do so, it describes how dictators manage their elites and what factors determine the outcomes of their decision. Although considerable literature has examined the various structural features of dictatorships and has identified different elite management strategies to explain the persistence of dictatorships, few, if any, have empirically tested any of the theoretical propositions generated by this increasingly large body of literature. This dissertation is the first empirical attempt to explore the elite management strategies of various dictatorships, ranging from the individual case of the most extreme dictatorship (North Korea) as well as different kinds of military dictatorships (South Korea), and global patterns of autocratic regimes. To address the main research question, "what determines the choice of the dictator's elite management strategies?" this dissertation identifies three key factors - dictator, elites, and structure. The relationship between dictators and elites is basically hostile. Conflicts between actors over power acquisition often emerge in violent ways. Nevertheless, dictators do not always treat elites with repression. They sometimes make efforts to embrace and cooperate with the other elites. The variation of their strategies toward elites is determined by various conditions. The results of this dissertation indicate that three factors of dictators, elites, and the environments surrounding them significantly affect the elite management strategies under dictatorships. The main theoretical arguments of this dissertation are supported by the evidence in the three empirical chapters of this dissertation.
|
17 |
Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge FlowJanuary 2010 (has links)
abstract: Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle inside the cavity and certain unsteady mainstream ingestion mechanisms are realized from the tracer gas. Simulated velocity distributions were scrutinized against Particle Image Velocimetry plots in the rotor-stator cavity and are in reasonable agreement with all of the measurements. / Dissertation/Thesis / M.S. Engineering 2010
|
18 |
Aerodynamics of Endwall Contouring with Discrete Holes and an Upstream Purge Slot Under Transonic Conditions with and without BlowingBlot, Dorian Matthew 23 January 2013 (has links)
Endwall contouring has been widely studied as an effective measure to improve aerodynamic performance by reducing secondary flow strength. The effects of endwall contouring with discrete holes and an upstream purge slot for a high turning (127") airfoil passage under transonic conditions are investigated. The total pressure loss and secondary flow field were measured for two endwall geometries. The non-axisymmetric endwall was developed through an optimization study [1] to minimize secondary losses and is compared to a baseline planar endwall. The blade inlet span increased by 13 degrees with respect to the inlet in order to match engine representative inlet/exit Mach number loading in a HP turbine. The experiments were performed in a quasi-2D linear cascade with measurements at design exit Mach number 0.88 and incidence angle. Four cases were analyzed for each endwall -- the effect of slot presence (with/without coolant) and the effect of discrete holes (with/without coolant) without slot injection. The coolant to mainstream mass flow ratio was set at 1.0% and 0.25% for upstream purge slot and discrete holes, respectively. Aerodynamic loss coefficient is calculated with the measured exit total pressure at 0.1 Cax downstream of the blade trailing edge. CFD studies were conducted in compliment. The aero-optimized endwall yielded lower losses than baseline without the presence of the slot. However, in presence of the slot, losses increased due to formation of additional vortices. For both endwall geometries, results reveal that the slot has increased losses, while the addition of coolant further influences secondary flow development. / Master of Science
|
19 |
Time-Averaged and Time-Accurate Aerodynamic Effects of Rotor Purge Flow for a Modern, Rotating, High-Pressure Turbine Stage and Low-Pressure Turbine VaneGreen, Brian Richard 16 December 2011 (has links)
No description available.
|
20 |
Aerodynamic performance of a transonic turbine blade passage in presence of upstream slot and mateface gap with endwall contouringJain, Sakshi 27 January 2014 (has links)
The present study investigates mixed out aerodynamic loss coefficient measurements for a high turning, contoured endwall passage under transonic operating conditions in presence of upstream purge slot and mateface gap. The upstream purge slot represents the gap between stator-rotor interface and the mateface gap simulates the assembly feature between adjacent airfoils in an actual high pressure turbine stage. While the performance of the mateface and upstream slot has been studied for lower Mach number, no studies exist in literature for transonic flow conditions. Experiments were performed at the Virginia Tech's linear, transonic blow down cascade facility. Measurements were carried out at design conditions (isentropic exit Mach number of 0.87, design incidence) without and with coolant blowing. Upstream leakage flow of 1.0% coolant to mainstream mass flow ratio (MFR) was considered with the presence of mateface gap. There was no coolant blowing through the mateface gap itself. Cascade exit pressure measurements were carried out using a 5-hole probe traverse at a plane 1.0Cax downstream of the trailing edge for a planar geometry and two contoured endwalls. Spanwise measurements were performed to complete the entire 2D loss plane from endwall to midspan, which were used to plot pitchwise averaged losses for different span locations and loss contours for the passage. Results reveal significant reduction in aerodynamic losses using the contoured endwalls due to the modification of flow physics compared to a non contoured planar endwall. / Master of Science
|
Page generated in 0.0426 seconds