51 |
Lamb Wave Based Active Damage Identification in Adhesively Bonded Composite Lap JointsJolly, Prateek 07 May 2016 (has links)
Bonding composite structures using adhesives offers several advantages over mechanical fastening such as better flow stress, weight saving, improved fatigue resistance and the ability to join dissimilar structures. The hesitation to adopt adhesively bonded composite joints stems from the lack of knowledge regarding damage initiation and propagation mechanisms within the joint. A means of overcoming this hesitation is to continuously monitor damage in the joint. This study proposes a methodology to conduct structural health monitoring (SHM) of an adhesively bonded composite lap joint using acoustic, guided Lamb waves by detecting, locating and predicting the size of damage. Finite element modeling of a joint in both 2D and 3D is used to test the feasibility of the proposed damage triangulation technique. Experimental validation of the methodology is conducted by detecting the presence, location and size of inflicted damage with the use of tuned guided Lamb waves.
|
52 |
Power efficiency analysis for an Active structureCao, Renfang 02 May 2001 (has links)
Methods for analyzing the structural-acoustic power efficiency of active structures are developed. For this work we define the power efficiency as the ratio of the sound power radiated by a structure to the maximum possible radiated sound power. An active structure is defined as one that has electromechanical actuators distributed over its surface for the purpose of structural-acoustic excitation. The power efficiency of planar, baffled structures with arbitrary boundary conditions is examined using a combination of methods based on numerical integration, variational principles, and finite element analysis.
The fundamental result of this work is that computing the power efficiency of an active structure reduces to the solution of two eigenvalue problems. The maximum possible sound power radiated by a planar, baffled structure is shown to be equivalent to the largest eigenvalue of the acoustic power transfer matrix. The structural-acoustic power efficiency is the solution of a separate generalized eigenvalue problem whose parameters include the location of the electromechanical actuators and the type of electromechanical actuation. The advantage of this metric over other measures of radiation efficiency is that 0 and 1 bound the structural-acoustic power efficiency. Furthermore, solving for the power efficiency as a function of frequency yields a measure of the bandwidth of the structural-acoustic actuator.
Power efficiency is analyzed for point force actuation and distributed moment actuation. Numerical simulations demonstrate that maximizing the power efficiency requires that the magnitude and phase of the structural modal velocity vector be matched to that of the eigenvector that corresponds to the maximum eigenvalue of the acoustic power transfer matrix. Matching the modal velocity to the maximizing eigenvector produces a vibration shape that maximizes the sound power radiation of the structure. Individual actuators are not able to achieve high efficiency over a broad frequency range for both types of electromechanical actuation. Multiple-actuator arrays are able to achieve higher average efficiency at the expense of increased number of actuators.
An optimization problem is then posed to maximize the structural-acoustic power efficiency by varying the location and size of distributed moment actuators. We demonstrate that an average efficiency on the order of 0.85 is possible over a large bandwidth through optimal placement and sizing of a set of four distributed moment actuators. Experimental results on a baffled plate demonstrate that correct phasing of the actuators results in velocity distributions that correlate well with predicted results. / Ph. D.
|
53 |
Analysis of the sensing region of a PZT actuator-sensorEsteban, Jaime 06 June 2008 (has links)
A high frequency impedance-based qualitative non-destructive evaluation (NDE) technique has been successfully applied for structural health monitoring at the Center for Intelligent Material Systems and Structures (CIMSS) [1-3]. This new technique uses piezoceramic (PZT) patches as actuator-sensors to provide a low-power driven constant voltage dynamic excitation, and to record the modulated current flow through the structure. Therefore, it relies on tracking the electrical point impedance to identify incipient level damage. The high frequency excitation provided by the PZT, ensures the detection of minor changes in the monitored structure. It also limits the sensing area to a region close to the PZT source, therefore only changes in the near field of the PZT are detected, enhancing the ability of this technique to localize incipient damage.
The phenomena of the PZT's sensing region localization has been the driving motivation for this research. More fundamental analytical research should be performed before full application of this technique is possible. Thereby, a wave propagation continuum mechanics based approach has been applied to model the high frequency vibrations of one dimensional structures. Energy dissipation mechanisms, such as bolted connections and internal friction, are considered to have a major role in the attenuation of the PZT's induced wave, therefore these mechanisms has been extensively studied.
To analyzed bolted connections, linear and nonlinear joint models have been used to describe the wave interaction with such nonconservative discontinuities. Also, with the use of an impedance based model, the electromechanical coupling of the PZT and the host structure is added into the formulation. The wave interaction and energy dissipated at the bolted discontinuity has been assessed with energy flux computations of the incident, transmitted, and reflected waves. The effect of loosening the bolted joint has been also analyzed by reducing the spring stiffness and increasing the damping in the dash pots for the linear joint model, and reducing the Coulomb stiffness and shearing force at the interface for the nonlinear case.
A scheme based on the correspondence principle has been applied to calculate the specific damping capacity of a system, at any given frequency, as a quantification of the energy dissipated through the system. The material damping was added into the formulation assuming the modulus to have a complex representation, and therefore the corresponding loss factors were found with active measurement of the material properties of the specimen via a wave propagation method, that monitories the wave's speed at two locations.
Once the bases of the analytical model have been set up and corroborated with experiments, a parametric study has been developed to account for the various factors that can affect the sensing range of the PZT’s induced wave, and therefore to have a “rule of thumb on how to go about” when bonding PZTs to structures to monitor them. Apart from the energy dissipation mechanisms, other parameters responsible for the reflection of the incoming wave, and its consequent attenuation, has also been reconstructed. With the extensive analysis of these parameters, an impedance damage metric, based on the undamaged and damaged impedance, has been developed for various factors that can be the source of incipient damage. An attenuation metric has also been introduced to identify the degree of transmission of the propagating wave at certain discontinuities. The analysis of the case scenarios reproduced in this parametric study will aid in the knowledge about the number of PZTs needed to be placed in the monitored structure, the most critical locations, and when a monitored member in a system need to be replaced. / Ph. D.
|
54 |
Modeling Time-dependent Responses of Piezoelectric Fiber CompositeLi, Kuo-An 2009 December 1900 (has links)
The existence of polymer constituent in piezoelectric fiber composites (PFCs)
could lead to significant viscoelastic behaviors, affecting overall performance of PFCs.
High mechanical and electrical stimuli often generate significant amount of heat,
increasing temperatures of the PFCs. At elevated temperatures, most materials, especially
polymers show pronounced time-dependent behaviors. Predicting time-dependent
responses of the PFCs becomes important to improve reliability in using PFCs. We study
overall performance of PFCs having unidirectional piezoceramic fibers, such as PZT
fibers, dispersed in viscoelastic polymer matrix. Two types of PFCs are studied, which
are active fiber composites (AFCs) and macro fiber composites (MFCs). AFCs and
MFCs consist of unidirectional PZT fibers dispersed in epoxy placed between two
interdigitated electrode and kapton layers. The AFCs have a circular fiber cross-section
while the MFCs have a square fiber cross-section. Finite element (FE) models of
representative volume elements (RVEs) of active PFCs, having square and circular fiber
cross-sections, are generated for composites with 20, 40, and 60 percent fiber contents. Two FE
micromechanical models having one fiber embedded in epoxy matrix and five fibers
placed in epoxy matrix are considered. A continuum 3D piezoelectric element in ABAQUS FE is used. A general time-integral function is applied for the mechanical,
electrical, and piezoelectric properties in order to incorporate the time-dependent effect
and histories of loadings. The effective properties of PZT-5A/epoxy and
PZT-7A/LaRC-SI piezocomposites determined from the FE micromechanical models are
compared to available experimental data and analytical solutions in the literature.
Furthermore, the effect of viscoelastic behaviors of the LaRC-SI matrix at an elevated
temperature on the overall electro-mechanical and piezoelectric constants are examined.
|
55 |
Mikromechanische Modellierung morphotroper PZT-Keramiken / Micromechanical modelling of PZT ceramicsNeumeister, Peter 20 September 2011 (has links) (PDF)
Morphotrope PZT-Keramiken sind Festkörperlösungen aus Bleizirkonat und Bleititanat mit chemischen Zusammensetzungen um die 47% Ti-Anteil. Sie weisen im gepolten Zustand die größten piezoelektrischen Koppelkonstanten auf und sind daher von speziellem Interesse. Zur Vorhersage des Polungszustandes und der Bauteilfestigkeit in komplexen Bauteilen werden elektromechanisch gekoppelte Materialmodelle benötigt. In dieser Arbeit wird ein mikromechanischer Modellansatz aus der Literatur aufgegriffen. Ausgangspunkt ist ein dreidimensionales tetragonales Modell, welches ein repräsentatives Volumenelement des Kornverbundes und ein mikroskopisches Kornmodell vereint. Damit gelingt die Beschreibung der Korninteraktionen infolge unterschiedlicher Polungszustände der Körner. Die Domänenstruktur der Körner wird mittels der Volumenanteile der kristallographischen Varianten dargestellt. Ein vereinfachter Satz an mikroskopischen Materialkonstanten wird anhand experimenteller Daten und theoretischer Betrachtungen aus der Literatur abgeleitet. Die für zwei Lastfälle berechneten makroskopischen Materialantworten zeigen explizit, dass das tetragonale Modell nicht in der Lage ist, das Verhalten morphotroper PZT-Keramiken nachzubilden. Aus diesem Grund wird das Modell im Hinblick auf die besondere kristallographische Struktur morphotroper PZT-Keramiken um eine rhomboedrische Phase in veränderlichen Anteilen erweitert. Die somit berechneten makroskopischen Antworten stimmen sowohl quantitativ als auch qualitativ gut mit experimentellen Ergebnissen überein. Der Einfluss der im Modell berücksichtigten Kristallstruktur auf die makroskopische Materialantwort wird in der Arbeit ausführlich analysiert. / Morphotropic PZT ceramics are solid solutions made of lead zirconate and lead titanate with chemical composition around 47% Ti-content. When poled they possess the greatest piezoelectric coupling constants for which they are of special interest. Predicting the poling condition and the strength in complex devices requires electromechanically coupled material models. Within this work, a micromechanical modelling approach is utilised. Starting point is a three-dimensional tetragonal model, which combines a representative volume element of the grain compound together with a microscopic grain model. This allows the consideration of grain interaction due to different poling conditions of the grains. The domain structure of the grains is captured by volume fractions of the crystallographic variants. A simplified set of microscopic material constants is derived from experimental and theoretical data given in the literature. The macroscopic material response, which is computed for two load cases, shows explicitly that the tetragonal model is not capable of reproducing the behaviour of morphotropic PZT ceramics. Therefore, the model is extended by the rhombohedral phase in varying quantity with view of the specific crystallographic structure of morphotropic PZT ceramics. The so computed macroscopic response shows a quantitatively as well as qualitatively good agreement with experimental results. The effect of the crystallographic structure which is considered within the model on the macroscopic material response is extensively analysed.
|
56 |
Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas /Rosa, Vinicius Augusto Matheus January 2016 (has links)
Orientador: Vicente Lopes Junior / Resumo: Este trabalho analisa um método de Monitoramento da Integridade de Estruturas (SHM, do inglês Structural Health Monitoring) usando funções erro calculadas a partir de ondas guiadas que são refletidas nos danos. Este método foi primeiro testado por Gorgin et al em 2014, que apresentou o método aplicado para materiais isotrópicos. A abordagem é testada experimentalmente em materiais anisotrópicos e isotrópicos. O sinal da estrutura intacta, que será referido como baseline e o sinal atual para cada caminho de propagação (entre dois transdutores PZT) são medidos e a energia do sinal de dispersão para cada caminho é calculada em um dado intervalo. Assumindo que existe dano no ponto avaliado, a onda irá refletir neste ponto e se propagar até o sensor. A técnica é baseada no tempo de propagação (time-of-flight) entre o atuador (primeiro transdutor PZT) até o ponto avaliado mais o tempo de propagação do ponto avaliado até o sensor (segundo transdutor PZT, em uma configuração pitch-catch) para cada ponto da estrutura. A velocidade de propagação em materiais anisotrópicos é dependente da direção de propagação. Isto não acontece em materiais isotrópicos, onde a velocidade de propagação é constante e não é dependente da direção de propagação. No caso de materiais anisotrópicos as velocidades de propagação para diferentes direções foram calculadas experimentalmente e incorporadas ao algoritmo para calcular o time-of-flight corretamente para todos os pontos da estrutura. A energia do sina... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work highlights a method for Structural Health Monitoring using error functions computed from guided waves reflected from damage. This method was first tested by Gorgin et al in 2014, who presented the method for isotropic plates. The approach is experimentally tested on anisotropic and isotropic specimens such as composite and aluminum plates, respectively. The baseline and test signals of each sensing path (between two PZT transducers) are measured and the energy of the scatter signal for each path is calculated in a given range. The structure is meshed and the middle point of each component is considered in the calculations. Assuming that there is damage in the evaluated position, the wave will reflect at this point and propagate to the next transducer. The technique is based in the time-of-flight between the actuator (first PZT transducer) and the evaluated point plus the time-of-flight of the evaluated point to the sensor (second PZT transducer, for a pitch-catch configuration) for each mesh component of the structure. The wave speeds in anisotropic specimens are propagation direction dependent. It does not happen in isotropic materials, which have the wave speed constant and non-dependent of the propagation direction. In the case of anisotropic materials, the wave speed for different angles were experimentally computed and incorporated in the algorithm in order to calculate the proper time-of-flight. The energy of the scatter signal is computed in a time range base... (Complete abstract click electronic access below) / Mestre
|
57 |
Localização de danos em estruturas anisotrópicas com a utilização de Ondas Guiadas / Damage localization in anisotropic structures using Guided WavesRosa, Vinicius Augusto Matheus [UNESP] 25 July 2016 (has links)
Submitted by Vinicius Augusto Matheus Rosa null (vinicius91027@aluno.feis.unesp.br) on 2016-09-25T14:21:09Z
No. of bitstreams: 1
Vinicius Rosa-PDF_FINAL.pdf: 3807538 bytes, checksum: d62638a8fa9c1ae27ad1e162a2d1d068 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-09-27T14:30:43Z (GMT) No. of bitstreams: 1
rosa_vam_me_ilha.pdf: 3807538 bytes, checksum: d62638a8fa9c1ae27ad1e162a2d1d068 (MD5) / Made available in DSpace on 2016-09-27T14:30:43Z (GMT). No. of bitstreams: 1
rosa_vam_me_ilha.pdf: 3807538 bytes, checksum: d62638a8fa9c1ae27ad1e162a2d1d068 (MD5)
Previous issue date: 2016-07-25 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Este trabalho analisa um método de Monitoramento da Integridade de Estruturas (SHM, do inglês Structural Health Monitoring) usando funções erro calculadas a partir de ondas guiadas que são refletidas nos danos. Este método foi primeiro testado por Gorgin et al em 2014, que apresentou o método aplicado para materiais isotrópicos. A abordagem é testada experimentalmente em materiais anisotrópicos e isotrópicos. O sinal da estrutura intacta, que será referido como baseline e o sinal atual para cada caminho de propagação (entre dois transdutores PZT) são medidos e a energia do sinal de dispersão para cada caminho é calculada em um dado intervalo. Assumindo que existe dano no ponto avaliado, a onda irá refletir neste ponto e se propagar até o sensor. A técnica é baseada no tempo de propagação (time-of-flight) entre o atuador (primeiro transdutor PZT) até o ponto avaliado mais o tempo de propagação do ponto avaliado até o sensor (segundo transdutor PZT, em uma configuração pitch-catch) para cada ponto da estrutura. A velocidade de propagação em materiais anisotrópicos é dependente da direção de propagação. Isto não acontece em materiais isotrópicos, onde a velocidade de propagação é constante e não é dependente da direção de propagação. No caso de materiais anisotrópicos as velocidades de propagação para diferentes direções foram calculadas experimentalmente e incorporadas ao algoritmo para calcular o time-of-flight corretamente para todos os pontos da estrutura. A energia do sinal de dispersão é calculada em um intervalo baseado no time-of-flight de cada posição analisada. A estimativa da localização do dano é definida através de uma função erro resultante para cada ponto da área monitorada. Como a função erro é baseada na interferência do dano na propagação de ondas guiadas, o maior valor da função erro mostra uma menor probabilidade de dano naquela posição. Uma imagem é gerada com um valor da função erro para cada ponto avaliado da estrutura. A função erro compara valores de energia nos devidos intervalos para cada par de transdutores PZT. O método foi aplicado para várias frequências de excitação, afim de obter-se um resultado melhor. / This work highlights a method for Structural Health Monitoring using error functions computed from guided waves reflected from damage. This method was first tested by Gorgin et al in 2014, who presented the method for isotropic plates. The approach is experimentally tested on anisotropic and isotropic specimens such as composite and aluminum plates, respectively. The baseline and test signals of each sensing path (between two PZT transducers) are measured and the energy of the scatter signal for each path is calculated in a given range. The structure is meshed and the middle point of each component is considered in the calculations. Assuming that there is damage in the evaluated position, the wave will reflect at this point and propagate to the next transducer. The technique is based in the time-of-flight between the actuator (first PZT transducer) and the evaluated point plus the time-of-flight of the evaluated point to the sensor (second PZT transducer, for a pitch-catch configuration) for each mesh component of the structure. The wave speeds in anisotropic specimens are propagation direction dependent. It does not happen in isotropic materials, which have the wave speed constant and non-dependent of the propagation direction. In the case of anisotropic materials, the wave speed for different angles were experimentally computed and incorporated in the algorithm in order to calculate the proper time-of-flight. The energy of the scatter signal is computed in a time range based on the time of flight of each analyzed position. The estimated damage location is defined through a resultant error function for each evaluated point in the monitored area. As the error function is based on the interference of the damage in the propagation of guided waves, the higher value of the error implies the less likelihood of damage in that position. An image is generated with an error value for each mesh position in the plate. This error function compares the energy in the given ranges for each pair of transducers. In addition, several frequencies were tested and the results for each one were combined in order to get a better result. / CNPq: 160328/2014-4
|
58 |
Aplicação dos mapas auto-organizáveis associado ao monitoramento da integridade estrutural baseado na impedância eletromecânica / Application of the self-organizing maps associated with the structural health monitoring based on the electromechanical impedanceDurval, Michael dos Santos 04 July 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-27T14:09:42Z
No. of bitstreams: 2
Dissertação - Michael dos Santos Durval - 2018.pdf: 12689287 bytes, checksum: a4aa8729f88220ca5e557b61addf7b0a (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-27T14:35:49Z (GMT) No. of bitstreams: 2
Dissertação - Michael dos Santos Durval - 2018.pdf: 12689287 bytes, checksum: a4aa8729f88220ca5e557b61addf7b0a (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-27T14:35:49Z (GMT). No. of bitstreams: 2
Dissertação - Michael dos Santos Durval - 2018.pdf: 12689287 bytes, checksum: a4aa8729f88220ca5e557b61addf7b0a (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-07-04 / Structural Health Monitoring (SHM) is a very cost-effective technique to reduce costs, increase life-cycle, and improve the performance of engineering structures. The impedancebased methodology uses the electromechanical behavior of piezoelectric materials (PZTs) to detect structural anomalies and damages. This technique uses high frequencies and excites the local modes, thus providing the monitoring of any change of the structural mechanical impedance in the region of influence of PZT. From the variation of the impedance signals, it can be concluded whether or not there is a damage. Artificial neural networks (RNA) are part of a broad concept called artificial systems. The foundation of neural networks is associated with the functioning of the human brain, which after training has the ability to perform associations. This science has great applicability in the solution of artificial intelligence problems, through the modeling of systems that use connections that make it possible to simulate the human nervous system. This work uses Kohonen’s self-organizing maps (SOM) associated to SHM based on electromechanical impedance for the detection and classification of damages in an aluminum beam. Based on the system under analysis, the network was trained to five different failure and severity positions. Through the neural network model of self-organizing maps, the network provided 30 maps as answers to the training and learning process. With this, it was realized qualitatively based on the concentration of energy of the maps that the grouping and classification of the different conditions of damages in which the engineering structure was submitted, happened with success. In order to establish a quantitative analysis proving the potential of the SOM network, the Hamming distance formula was applied, in which the results confirmed its accuracy. / O Monitoramento de Integridade Estrutural (SHM – Structural Health Monitoring) é uma
técnica bem viável para se reduzir custos, aumentar a vida útil e melhorar o desempenho
de estruturas de engenharia. A metodologia baseada em impedância usa o comportamento
eletromecânico de materiais piezelétricos (PZT) para detectar anomalias e danos estruturais.
Esta técnica utiliza altas frequências para excitar os modos locais, proporcionando,
assim, o monitoramento de qualquer mudança da impedância mecânica estrutural na região
de influência do PZT. A partir da variação dos sinais de impedância pode-se concluir
pela existência ou não de um dano. Redes neurais artificiais (RNA) fazem parte de um amplo
conceito chamado sistemas artificiais. O fundamento de redes neurais está associado ao
funcionamento do cérebro humano, que após treinamento detém a capacidade de realizar
associações. Esta ciência tem grande aplicabilidade na solução de problemas de inteligência
artificial, através da modelagem de sistemas que usam conexões que possibilitam simular
o sistema nervoso humano. Este trabalho utilizou a técnica dos mapas auto-organizáveis
(SOMs – Self-Organizing Maps) de Kohonen associado ao SHM baseado na impedância eletromecânica para a detecção e a classificação de danos em uma viga de alumínio. Com base no sistema em análise, treinou-se a rede para cinco posições de falhas e severidades distintas. Por meio do modelo de rede neural dos mapas auto-organizáveis, a rede forneceu 30 mapas como respostas ao processo de treinamento e aprendizagem. Com isto, percebeu-se qualitativamente com base na concentração de energia dos mapas que o agrupamento e classificação das diferentes condições de danos em que a estrutura de engenharia foi submetida, ocorreu com sucesso. Para se estabelecer uma análise quantitativa que comprovasse o potencial da rede SOM, aplicou-se a fórmula da distância de Hamming, nos quais os resultados confirmaram sua precisão.
|
59 |
Teplotní závislost elektronického šumu piezokeramických snímačů / Electronic noise temperature characteristics of piezoceramic sensorsShromáždil, Petr January 2009 (has links)
The main objective of the thesis „Electronic noise temperature dependence of piezoceramic sensors“ is to design the measuring set-up for the measurement of the piezoceramic sensor noise temperature dependence. The application for the control of the measurement process is realized. The theoretic chapter is focused on the properties of materials for the production of piezoceramic sensors. The basic effects related to the piezoceramic properties and the material structure is described in this part. Next chapter is focused on the technology of production of used piezoceramic. The properties of solid solutions as PbZrO3 – PbTiO3, and the non-destructive methods of the material testing are discussed. Our attention is concentrated to methods of acoustic emission. The next chapter is concerned on the realization of the measuring set-up and program equipment. The tested sample is the acoustic emission sensor made of piezoceramic material PCM-51. It is placed in the cylinder chest which is heated by the DC current source. The temperature measurement is realized by the data acquisition switch unit. The results of measurements are saved in PC and they are analyzed using MATLAB program. As a result we receive the frequency spectra of the electric noise voltage spectral density SU. The temperature dependencies of resonant peak value and frequency are determined from these spectra.
|
60 |
Návrh mikroaktuátoru s využitím SMART materiálů / Proposal of Microactuator Based on SMART MaterialHradil, Aleš January 2011 (has links)
The master’s thesis deals with the proposal of microactuator based on SMART material. The thesis opens with the comparison of SMART materials which are suitable for actuator construction from the point of view of a reaction on stimulation in form of deformation. Subsequent part of the thesis is the report theory of piezoelectric effect, it also describes direct and indirect effects and it concerns about the description of piezoelectric materials. The thesis focuses on several principles of piezoactuators and motors. The last part of the thesis includes modeling and simulation of piezoelectric material in program ANSYS 13.0 and dimensioning geometric of actuator with evaluation of impact of parameters on final motion.
|
Page generated in 0.0465 seconds