• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring the Scalability and Performance of Networks-on-Chip with Deflection Routing in 3D Many-core Architecture

Weldezion, Awet Yemane January 2016 (has links)
Three-Dimensional (3D) integration of circuits based on die and wafer stacking using through-silicon-via is a critical technology in enabling "more-than-Moore", i.e. functional integration of devices beyond pure scaling ("more Moore"). In particular, the scaling from multi-core to many-core architecture is an excellent candidate for such integration. 3D systems design follows is a challenging and a complex design process involving integration of heterogeneous technologies. It is also expensive to prototype because the 3D industrial ecosystem is not yet complete and ready for low-cost mass production. Networks-on-Chip (NoCs) efficiently facilitates the communication of massively integrated cores on 3D many-core architecture. In this thesis scalability and performance issues of NoCs are explored in terms of architecture, organization and functionality of many-core systems. First, we evaluate on-chip network performance in massively integrated many-core architecture when network size grows. We propose link and channel models to analyze the network traffic and hence the performance. We develop a NoC simulation framework to evaluate the performance of a deflection routing network as the architecture scales up to 1000 cores. We propose and perform comparative analysis of 3D processor-memory model configurations in scalable many-core architectures. Second, we investigate how the deflection routing NoCs can be designed to maximize the benefit of the fast TSVs through clock pumping techniques. We propose multi-rate models for inter-layer communication. We quantify the performance benefit through cycle-accurate simulations for various configurations of 3D architectures. Finally, the complexity of massively integrated many-core architecture by itself brings a multitude of design challenges such as high-cost of prototyping, increasing complexity of the technology, irregularity of the communication network, and lack of reliable simulation models. We formulate a zero-load average distance model that accurately predicts the performance of deflection routing networks in the absence of data flow by capturing the average distance of a packet with spatial and temporal probability distributions of traffic. The thesis research goals are to explore the design space of vertical integration for many-core applications, and to provide solutions to 3D technology challenges through architectural innovations. We believe the research findings presented in the thesis work contribute in addressing few of the many challenges to the field of combined research in many-core architectural design and 3D integration technology. / <p>QC 20151221</p>
2

Techniques d'Apprentissage par Renforcement pour le Routage Adaptatif dans les Réseaux de Télécommunication à Trafic Irrégulie

HOCEINI, SAID 23 November 2004 (has links) (PDF)
L'objectif de ce travail de thèse est de proposer des approches algorithmiques permettant de traiter la problématique du routage adaptatif (RA) dans un réseau de communication à trafic irrégulier. L'analyse des algorithmes existants nous a conduit à retenir comme base de travail l'algorithme Q-Routing (QR); celui-ci s'appuie sur la technique d'apprentissage par renforcement basée sur les modèles de Markov. L'efficacité de ce type de routage dépend fortement des informations sur la charge et la nature du trafic sur le réseau. Ces dernières doivent être à la fois, suffisantes, pertinentes et reflétant la charge réelle du réseau lors de la phase de prise de décision. Pour remédier aux inconvénients des techniques utilisant le QR, nous avons proposé deux algorithmes de RA. Le premier, appelé Q-Neural Routing, s'appuie sur un modèle neuronal stochastique pour estimer et mettre à jour les paramètres nécessaires au RA. Afin d'accélérer le temps de convergence, une deuxième approche est proposée : K-Shortest path Q-Routing. Elle est basée sur la technique de routage multi chemin combiné avec l'algorithme QR, l'espace d'exploration étant réduit aux k meilleurs chemins. Les deux algorithmes proposés sont validés et comparés aux approches traditionnelles en utilisant la plateforme de simulation OPNET, leur efficacité au niveau du RA est mise particulièrement en évidence. En effet, ceux-ci permettent une meilleure prise en compte de l'état du réseau contrairement aux approches classiques.

Page generated in 0.0599 seconds