661 |
Viable computing systems : a set theory decomposition of Anthony Stafford Beer's viable system model : aspirant of surpassing autonomic computingThompson, Ruth January 2011 (has links)
No description available.
|
662 |
SUIDS : a resource-efficient intrusion detection system for ubiquitous computing environmentsZhou, Bo January 2007 (has links)
The background of the project is based on the notion of ubiquitous computing. Ubiquitous computing was introduced as a prospective view about future usage of computers. Smaller and cheaper computer chips will enable us to embed computing ability into any appliances. Along with the convenience brought by ubiquitous computing, its inherent features also exposed its weaknesses. It makes things too easy for a malicious user to spy on others. An Intrusion Detection System (IDS) is a tool used to protect computer resources against malicious activities. Existing IDSs have several weaknesses that hinder their direct application to ubiquitous networks. These shortcomings are caused by their lack of considerations about the heterogeneity, flexibility and resource constraints of ubiquitous networks. Thus the evolution towards ubiquitous computing demands a new generation of resource-efficient IDSs to provide sufficient protections against malicious activities. SUIDS is the first intrusion detection system proposed for ubiquitous computing environments. It keeps the special requirements of ubiquitous computing in mind throughout its design and implementation. SUIDS adopts a layered and distributed system architecture, a novel user-centric design and service-oriented detection method, a new resource-sensitive scheme, including protocols and strategies, and a novel hybrid metric based algorithm. These novel methods and techniques used in SUIDS set a new direction for future research and development. As the experiment results demonstrated, SUIDS is able to provide a robust and resource-efficient protection for ubiquitous computing networks. It ensures the feasibility of intrusion detection in ubiquitous computing environments.
|
663 |
High performance communication framework for mobile sinks wireless sensor networksChang, Shih-Hao January 2009 (has links)
A wireless sensor networks typically consist of thousand of nodes and each node has limited power, processing and bandwidth resources. Harvesting advances in the past decade in microelectronics, sensing, wireless communications and networking, sensor networks technology is expected to have a significant impact on our lives in the twenty-first century. Proposed applications of sensor networks include environmental monitoring, natural disaster prediction and relief, homeland security, healthcare, manufacturing, transportation, and home appliances and entertainment. However, Communication is one of the major challenges in wireless sensor networks as it is the main source for energy depletion. Improved network lifetime is a fundamental challenge of wireless sensor networks. Many researchers have proposed using mobile sinks as one possible solution to improve the lifetime of wireless sensor networks. The reason is that the typical manyto- one communication traffic pattern in wireless sensor networks imposes a heavy forwarding load on the nodes close to the sinks. However, it also introduces many research challenges such as the high communication overhead for updating the dynamic routing paths to connect to mobile sinks and packet loss problems while transmitted messages to mobile sinks. Therefore, our goal is to design a robust and efficient routing framework for both non-geographic aware and geographic aware mobile sinks wireless sensor networks. In order to achieve this goal in non-geographic based mobile sinks wireless sensor networks, we proposed a spider-net zone routing protocol to improve network efficiency and lifetime. Our proposed routing protocol utilise spider web topology inspired by the way spiders hunt prey in their web to provide reliable and high performance data delivery to mobile sinks. For routing in geographic aware based mobile sinks wireless sensor networks, we proposed a fault-tolerant magnetic coordinate routing algorithm to allow these network sensors to take advantage of geographic knowledge to build a routing protocol. Our proposed routing algorithm incorporates a coordinated routing algorithm for grid based network topology to improve network performance. Our third contribution is a component level fault diagnosis scheme for wireless sensor networks. The advantage of this scheme, causal model fault diagnosis, is that it can "deeply understand" and express the relationship among failure behaviours and node system components through causal relations. The above contributions constitute a novel routing framework to address the routing challenges in mobile sinks wireless sensor networks, Our framework considers both geographic and non-geographic aware based sensor networks to achieve energy efficient, high performance and network reliability. We have analyzed the proposed protocols and schemes and evaluated their performances using analytical study and simulations. The evaluation was based on the most important metries in wireless sensor networks, such as: power consumption and average delay. The evaluation shows that our solution is more energy efficient, improves the network performance, and provides data reliability in mobile sinks wireless sensor networks.
|
664 |
An architecture for user privacy in mobile networksAskwith, Robert John January 2000 (has links)
No description available.
|
665 |
An intelligent force control scheme for robotic applications : contact with non-rigid environmentsKordich, Christian Jay January 1998 (has links)
No description available.
|
666 |
Self-management middleware services for autonomic grid computingOmar, Wail M. January 2006 (has links)
No description available.
|
667 |
Investigation of mechanisms for routing in mobile ad-hoc networkBakht, Humayun January 2006 (has links)
No description available.
|
668 |
Self-organization and management of wireless sensor networksAsim, Muhammad January 2010 (has links)
Wireless sensor networks (WSNs) are a newly deployed networking technology consisting of multifunctional sensor nodes that are small in size and communicate over short distances. These sensor nodes are mainly in large numbers and are densely deployed either inside the phenomenon or very close to it. They can be used for various application areas (e.g. health, military, home). WSNs provide several advantages over traditional networks, such as large-scale deployment, highresolution sensed data, and application adaptive mechanisms. However, due to their unique characteristics (having dynamic topology, ad-hoc and unattended deployment, huge amount of data generation and traffic flow, limited bandwidth and energy), WSNs pose considerable challenges for network management and make application development nontrivial. Management of wireless sensor networks is extremely important in order to keep the whole network and application work properly and continuously. Despite the importance of sensor network management, there is no generalize solution available for managing and controlling these resource constrained WSNs. In network management of WSNs, energy-efficient network selforganization is one of the main challenging issues. Self-organization is the property which the sensor nodes must have to organize themselves to form the network. Selforganization of WSNs is challenging because of the tight constraints on the bandwidth and energy resources available in these networks. A self organized sensor network can be clustered or grouped into an easily manageable network. However, existing clustering schemes offer various limitations. For example, existing clustering schemes consume too much energy in cluster formation and re-formation. This thesis presents a novel cellular self-organizing hierarchical architecture for wireless sensor networks. The cellular architecture extends the network life time by efficiently utilizing nodes energy and support the scalability of the system. We have analyzed the performance of the architecture analytically and by simulations. The results obtained from simulation have shown that our cellular architecture is more energy efficient and achieves better energy consumption distribution. The cellular architecture is then mapped into a management framework to support the network management system for resource constraints WSNs. The management framework is self-managing and robust to changes in the network. It is application-co-operative and optimizes itself to support the unique requirements of each application. The management framework consists of three core functional areas i.e., configuration management, fault management, and mobility management. For configuration management, we have developed a re-configuration algorithm to support sensor networks to energy-efficiently re-form the network topology due to network dynamics i.e. node dying, node power on and off, new node joining the network and cells merging. In the area of fault management we have developed a new fault management mechanism to detect failing nodes and recover the connectivity in WSNs. For mobility management, we have developed a two phase sensor relocation solution: redundant mobile sensors are first identified and then relocated to the target location to deal with coverage holes. All the three functional areas have been evaluated and compared against existing solutions. Evaluation results show a significant improvement in terms of re-configuration, failure detection and recovery, and sensors relocation.
|
669 |
Securing access to cloud computing for critical infrastructureYounis, Y. A. January 2015 (has links)
Cloud computing offers cost effective services on-demand which encourage critical infrastructure providers to consider migrating to the cloud. Critical infrastructures are considered as a backbone of modern societies such as power plants and water. Information in cloud computing is likely to be shared among different entities, which could have various degrees of sensitivity. This requires robust isolation and access control mechanisms. Although various access control models and policies have been developed, they cannot fulfil requirements for a cloud based access control system. The reason is that cloud computing has a diverse sets of security requirements and unique security challenges such as multi-tenant and heterogeneity of security policies, rules and domains. This thesis provides a detailed study of cloud computing security challenges and threats, which were used to identify security requirements for various critical infrastructure providers. We found that an access control system is a crucial security requirement for the surveyed critical infrastructure providers. Furthermore, the requirement analysis was used to propose a new criteria to evaluate access control systems for cloud computing. Moreover, this work presents a new cloud based access control model to meet the identified cloud access control requirements. The model does not only ensure the secure sharing of resources among potential untrusted tenants, but also has the capacity to support different access permissions for the same cloud user. Our focused in the proposed model is the lack of data isolation in lower levels (CPU caches), which could lead to bypass access control models to gain some sensitive information by using cache side-channel attacks. Therefore, the thesis investigates various real attack scenarios and the gaps in existing mitigation approaches. It presents a new Prime and Probe cache side-channel attack, which can give detailed information about addresses accessed by a virtual machine with no need for any information about cache sets accessed by the virtual machine. The design, implementation and evaluation of a proposed solution preventing cache side-channel attacks are also presented in the thesis. It is a new lightweight solution, which introduces very low overhead (less than 15,000 CPU cycles). It can be applied in any operating system and prevents cache side-channel attacks in cloud computing. The thesis also presents a new detecting cache side-channel attacks solution. It focuses on the infrastructure used to host cloud computing tenants by counting cache misses caused by a virtual machine. The detection solutions has 0% false negative and 15% false positive.
|
670 |
WISDeM : a human computer interactive model for e-learningJanvier, William Alan January 2004 (has links)
No description available.
|
Page generated in 0.0466 seconds