• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 15
  • 13
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ondas de Choques Transicionais Para Modelos Quadráticos de Duas Leis de Conservação / Transitional shocks waves for quadratic models of two conservation laws

ALMEIDA, Gisele Detomazi 29 November 2007 (has links)
Made available in DSpace on 2014-07-29T16:02:21Z (GMT). No. of bitstreams: 1 dissertacao gisele.pdf: 849978 bytes, checksum: 6707e4fe01d67af874b9cc826b72dfab (MD5) Previous issue date: 2007-11-29 / Transitional shock waves arises in solution of initial values problems for non linear systems of conservation laws that are not strictly hyperbolic. These waves are discontinuous solutions that posses viscous profile but do not conform to the Lax characteristic criterion, where inequalities between the shock propagation speed and the characteristic speeds must to be satisfied. These waves arise as transition between wave groups associated with distinct characteristic families. In this work we studied transitional shock waves for a system of two conservation laws with quadratic fux functions and positive defined viscosity matrix. In particular, we studied the transitional shock waves with viscous profile defined by orbits laying on straightlines. We show from examples, for systems with quadratic fux functions and viscosity matrix chosen in a convenience way, that is necessary to use transitional shock waves to solve the Riemann problem (initial data constant by parts) for these systems. / Ondas de choque transicionais aparecem nas soluções de problemas de valores iniciais para sistemas não lineares de leis de conservação não estritamente hiperbólicos . São soluções descontínuas que possuem perfil viscoso mas não satisfazem o critério de entropia de Lax, onde certas desigualdades entre a velocidade de propagação do choque e as velocidades características são satisfeitas. Estas ondas aparecem como transição entre grupos de ondas associados com diferentes famílias características. Neste trabalho estudamos as ondas de choque transicionais para um sistema de duas leis de conservação com função de fluxo quadratica e matriz de viscosidade definida positiva. Em particular estudamos os choques transicionais com perfil viscoso definidos por orbitas sobre um segmento de reta. Mostramos através de exemplos, para sistemas com funções de fluxo quadráticas e matrizes de viscosidade escolhidas de modo conveniente, que e necessário usar as ondas de choques transicionais para resolver o problema de Riemann (dados iniciais constantes por partes) para estes sistemas.
12

Análise, projeto e implementação de conversores CC-CC com ampla faixa de conversão aplicados em iluminação de estado sólido

Britto, Jonas Reginaldo de 18 December 2009 (has links)
This work consists of the study, design and implementation of DC-DC converters, used in lighting systems based on light emitting diodes (LEDs). Can be powered by an universal AC voltage source or battery, and the current in the LEDs is controlled digitally. The main objective is to present a proposal of new step-up/down converters topologies with full conversion much higher than that of conventional converters. So, is initially presented an overview of solid-state lighting (SSL). Following is presented the study on the dynamic behavior of converters based on modeling by the method of varying state-space average, ending with the design of a digital PI controller. This work resulted in the application for a patent PI-0801425-6 filed with the INPI, which presents a new family of converters with full conversion extremely wide, called cubic converters. / O presente trabalho consiste do estudo, projeto e implementação de conversores CCCC, aplicados em sistemas de iluminação de estado sólido baseado em diodos emissores de luz (LEDs). Podem ser alimentados por uma fonte de tensão alternada universal ou por uma bateria sendo que a corrente nos LEDs é controlada digitalmente. O objetivo principal é apresentar uma proposta de novas topologias de conversores abaixadores/elevadores com faixa de conversão muito maior que a dos conversores convencionais. Portanto, inicialmente é apresentada uma visão geral sobre iluminação de estado sólido (SSL). Na sequência, é apresentado o estudo sobre o comportamento dinâmico dos conversores baseado na modelagem através do método de variáveis de espaço de estados médio, finalizando com o dimensionamento de um controlador PI digital. Este trabalho resultou no pedido de patente de invenção PI-0801425-6 depositado junto ao INPI, o qual apresenta uma nova família de conversores com faixa de conversão extremamente larga, denominados de conversores cúbicos. / Doutor em Ciências
13

Equações diferenciais ordinárias não suaves autônomas e não autônomas / Autonomous and non autonomous non smooth ordinary differential equations

Silva, Clayton Eduardo Lente da [UNESP] 20 May 2016 (has links)
Submitted by CLAYTON EDUARDO LENTE DA SILVA null (claedu@gmail.com) on 2016-06-02T17:41:44Z No. of bitstreams: 1 TeseFinalClayton.pdf: 1339813 bytes, checksum: 78fb3fb4fd37414af7b1a14dd1d3a122 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-06-06T16:37:20Z (GMT) No. of bitstreams: 1 silva_cel_dr_sjrp.pdf: 1339813 bytes, checksum: 78fb3fb4fd37414af7b1a14dd1d3a122 (MD5) / Made available in DSpace on 2016-06-06T16:37:20Z (GMT). No. of bitstreams: 1 silva_cel_dr_sjrp.pdf: 1339813 bytes, checksum: 78fb3fb4fd37414af7b1a14dd1d3a122 (MD5) Previous issue date: 2016-05-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta tese estudamos sistemas dinâmicos não suaves autônomos e não autônomos. Consideramos inicialmente sistemas quadráticos positivamente limitados autônomos planares e damos condições sobre os campos para que o sistema de Filippov correspondente seja limitado. Também estudamos uma classe de sistemas quadráticos e provamos que, sob algumas restrições nos coeficientes da parte linear, os sistemas de Filippov relacionados são limitados. Em seguida, consideramos sistemas não autônomos e damos condições para a existência de soluções periódicas de uma classe de equações diferenciais ordinárias não autônomas. Por fim, consideramos equações diferenciais ordinárias não autônomas de segunda ordem genéricas, relacionadas a sistemas não suaves e não autônomos, estudamos o conceito de solução destas equações e damos condições analíticas que são satisfeitas por soluções típicas, como as soluções deslizantes, por exemplo. A unicidade de soluções para estas equações também é estudada. / In this thesis we study autonomous and non-autonomous non-smooth dynamical systems. We initially consider planar autonomous positively bounded quadratic systems. We give conditions on the vector fields for that the correspondent Filippov system be bounded. We also study a class of quadratic systems and we prove that, under some restrictions on the coefficients of linear part, the related Filippov systems are bounded. We then consider non-autonomous systems and we give conditions for the existence of periodic solutions of a certain class of non-autonomous ordinary differential equations. Finally we consider generic non-autonomous second order differential equations and we study the concept of solution of these equations and determine analytical conditions that are satisfied by typical solutions, sliding solutions for instance. Moreover, the uniqueness of solutions for these equations is studied.
14

A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano / The geometry of some tridimensional families of planar quadratic differential systems

Rezende, Alex Carlucci 22 September 2014 (has links)
Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI problema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações afins e reescala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando características específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos: a primeira possuindo um nó triplo semielemental e a segunda possuindo uma selanó semi elemental finita e uma selanó semielemental infinita formada pela colisão de uma sela infinita com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho da família tendo as selasnós dentro do espaço de bifurcação de sua forma normal gera 417. Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como modelo do tipo SIS (sistema suscetívelinfectadosuscetível, muito comum na matemática aplicada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas foram investigados usando de polinômios invariantes afins. / Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.
15

A geometria de algumas famílias tridimensionais de sistemas diferenciais quadráticos no plano / The geometry of some tridimensional families of planar quadratic differential systems

Alex Carlucci Rezende 22 September 2014 (has links)
Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI problema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações afins e reescala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando características específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos: a primeira possuindo um nó triplo semielemental e a segunda possuindo uma selanó semi elemental finita e uma selanó semielemental infinita formada pela colisão de uma sela infinita com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho da família tendo as selasnós dentro do espaço de bifurcação de sua forma normal gera 417. Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como modelo do tipo SIS (sistema suscetívelinfectadosuscetível, muito comum na matemática aplicada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas foram investigados usando de polinômios invariantes afins. / Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilberts 16th problem, are still open for this family. One of the goals of recent researchers is the topological classification of quadratic systems. As this attempt is not possible in the whole class due to the large number of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families with five parameters, which is still a large number), many subclasses are considered and studied. Specific characteristics are taken into account and this implies a decrease in the number of parameters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic systems: the first one possessing a finite semielemental triple node and the second one possessing a finite semielemental saddlenode and an infinite semielemental saddlenode formed by the collision of an infinite saddle with an infinite node. The bifurcation diagram for both families are tridimensional. The family having the triple node yields 28 topologically distinct phase portraits, whereas the closure of the family having the saddlenodes within the bifurcation space of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also present the analysis of a differential system known as SIS model (this kind of systems are easily found in applied mathematics) and the complete classification of quadratic systems possessing invariant hyperbolas.

Page generated in 0.0533 seconds