Spelling suggestions: "subject:"quadratic""
1 |
Discrete Approximations, Relaxations, and Applications in Quadratically Constrained Quadratic ProgrammingBeach, Benjamin Josiah 02 May 2022 (has links)
We present works on theory and applications for Mixed Integer Quadratically Constrained Quadratic Programs (MIQCQP). We introduce new mixed integer programming (MIP)-based relaxation and approximation schemes for general Quadratically Constrained Quadratic Programs (QCQP's), and also study practical applications of QCQP's and Mixed-integer QCQP's (MIQCQP).
We first address a challenging tank blending and scheduling problem regarding operations for a chemical plant. We model the problem as a discrete-time nonconvex MIQCP, then approximate this model as a MILP using a discretization-based approach. We combine a rolling horizon approach with the discretization of individual chemical property specifications to deal with long scheduling horizons, time-varying quality specifications, and multiple suppliers with discrete arrival times.
Next, we study optimization methods applied to minimizing forces for poses and movements of chained Stewart platforms (SPs). These SPs are parallel mechanisms that are stiffer, and more precise, on average, than their serial counterparts at the cost of a smaller range of motion. The robot will be used in concert with several other types robots to perform complex assembly missions in space. We develop algorithms and optimization models that can efficiently decide on favorable poses and movements that reduce force loads on the robot, hence reducing wear on this machine, and allowing for a larger workspace and a greater overall payload capacity.
In the third work, we present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions and formulate this approximation using mixed-integer programming (MIP). Combining this with a diagonal perturbation technique to convert a nonseparable quadratic function into a separable one, we present a mixed-integer convex quadratic relaxation for nonconvex quadratic optimization problems. We study the strength (or sharpness) of our formulation and the tightness of its approximation. We computationally demonstrate that our model outperforms existing MIP relaxations, and on hard instances can compete with state-of-the-art solvers.
Finally, we study piecewise linear relaxations for solving quadratically constrained quadratic programs (QCQP's). We introduce new relaxation methods based on univariate reformulations of nonconvex variable products, leveraging the relaxation from the third work to model each univariate quadratic term. We also extend the NMDT approach (Castro, 2015) to leverage discretization for both variables in a bilinear term, squaring the resulting precision for the same number of binary variables. We then present various results related to the relative strength of the various formulations. / Doctor of Philosophy / First, we study a challenging long-horizon supply acquisition problem for a chemical plant. For this problem, constraints with products of variables are required to track raw material composition from supply carriers to storage tanks to the production feed. We apply a mixed-integer nonlinear program (MIP) approximation of the problem combined with a rolling planning scheme to obtain good solutions for industry problems within a reasonable time frame.
Next, we study optimization methods applied to a robot designed as a stack of Stewart platforms (SPs), which will be used in concert with several other types robots to perform complex space missions. When chaining these SPs together, we obtain a robot that is generally stiffer more precise than a classic robot arm, enabling their potential use for a variety of purposes. Our methods can efficiently decide on favorable poses and movements for the robot that reduce force loads on the robot, hence reducing wear on this machine, and allowing for a larger usable range of motion and a greater overall payload capacity.
Our final two works focus on MIP-based techniques for nonconvex QCQP's. In the first work, we break down the objective into an easy-to-handle term minus some squared terms. We then introduce an elegant new MIP-based approximation to handle these squared terms. We prove that this approximation has strong theoretical guarantees, then demonstrate that it is effective compared to other approximations.
In the second, we directly model each variable product term using a MIP relaxation. We introduce two new formulations to do this that build on previous formulations, increasing the accuracy with the same number of integer variables. We then prove a variety of useful properties about the presented formulations, then compare them computationally on two families of problems.
|
2 |
On Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic ProgrammingDing, Yichuan 17 May 2007 (has links)
Two important topics in the study of Quadratically Constrained Quadratic Programming (QCQP) are how to exactly solve a QCQP with few constraints in polynomial time and how to find an inexpensive and strong relaxation bound for a QCQP with many constraints. In this thesis, we first review some important results on QCQP, like the S-Procedure, and the strength of Lagrangian Relaxation and the semidefinite relaxation. Then we focus on two special classes of QCQP, whose objective and constraint functions take the form trace(X^TQX + 2C^T X) + β, and trace(X^TQX + XPX^T + 2C^T X)+ β respectively, where X is an n by r real matrix. For each class of problems, we proposed different semidefinite relaxation formulations and compared their strength. The theoretical results obtained in this thesis have found interesting applications, e.g., solving the Quadratic Assignment Problem.
|
3 |
On Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic ProgrammingDing, Yichuan 17 May 2007 (has links)
Two important topics in the study of Quadratically Constrained Quadratic Programming (QCQP) are how to exactly solve a QCQP with few constraints in polynomial time and how to find an inexpensive and strong relaxation bound for a QCQP with many constraints. In this thesis, we first review some important results on QCQP, like the S-Procedure, and the strength of Lagrangian Relaxation and the semidefinite relaxation. Then we focus on two special classes of QCQP, whose objective and constraint functions take the form trace(X^TQX + 2C^T X) + β, and trace(X^TQX + XPX^T + 2C^T X)+ β respectively, where X is an n by r real matrix. For each class of problems, we proposed different semidefinite relaxation formulations and compared their strength. The theoretical results obtained in this thesis have found interesting applications, e.g., solving the Quadratic Assignment Problem.
|
4 |
Towards a Tableau Algorithm for Fuzzy ALC with Product T-normPeñaloza, Rafael 16 June 2022 (has links)
Very recently, the tableau-based algorithm for deciding consistency of general fuzzy DL ontologies over the product t-norm was shown to be incorrect, due to a very weak blocking condition. In this report we take the first steps towards a correct algorithm by modifying the blocking condition, such that the (finite) structure obtained through the algorithm uniquely describes an infinite system of quadratic constraints. We show that this procedure terminates, and is sound and complete in the sense that the input is consistent iff the corresponding infinite system of constraints is satisfiable.
|
5 |
[en] DECOMPOSITION AND RELAXATION ALGORITHMS FOR NONCONVEX MIXED INTEGER QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMMING PROBLEMS / [pt] ALGORITMOS BASEADOS EM DECOMPOSIÇÃO E RELAXAÇÃO PARA PROBLEMAS DE PROGRAMAÇÃO INTEIRA MISTA QUADRÁTICA COM RESTRIÇÕES QUADRÁTICAS NÃO CONVEXATIAGO COUTINHO CARNEIRO DE ANDRADE 29 April 2019 (has links)
[pt] Esta tese investiga e desenvolve algoritmos baseados em relaxação Lagrangiana
e técnica de desagregação multiparamétrica normalizada para
resolver problemas não convexos de programação inteira-mista quadrática
com restrições quadráticas. Primeiro, é realizada uma revisão de técnias
de relaxação para este tipo de problema e subclasses do mesmo. Num segundo
momento, a técnica de desagregação multiparamétrica normalizada é
aprimorada para sua versão reformulada onde o tamanho dos subproblemas
a serem resolvidos tem seu tamanho reduzido, em particular no número
de variáveis binárias geradas. Ademais, dificuldas em aplicar a relaxação
Lagrangiana a problemas não convexos são discutidos e como podem ser solucionados
caso o subproblema dual seja substituído por uma relaxação não
convexa do mesmo. Este método Lagrangiano modificado é comparado com
resolvedores globais comerciais e resolvedores de código livre. O método proposto
convergiu em 35 das 36 instâncias testadas, enquanto o Baron, um dos
resolvedores que obteve os melhores resultados, conseguiu convergir apenas
para 4 das 36 instâncias. Adicionalmente, mesmo para a única instância que
nosso método não conseguiu resolver, ele obteve um gap relativo de menos
de 1 por cento, enquanto o Baron atingiu um gap entre 10 por cento e 30 por cento para a maioria
das instâncias que o mesmo não convergiu. / [en] This thesis investigates and develops algorithms based on Lagrangian
relaxation and normalized multiparametric disaggregation technique
to solve nonconvex mixed-integer quadratically constrained quadratic programming.
First, relaxations for quadratic programming and related problem
classes are reviewed. Then, the normalized multiparametric disaggregation
technique is improved to a reformulated version, in which the size of
the generated subproblems are reduced in the number of binary variables.
Furthermore, issues related to the use of the Lagrangian relaxation to solve
nonconvex problems are addressed by replacing the dual subproblems with
convex relaxations. This method is compared to commercial and open source
off-the-shelf global solvers using randomly generated instances. The proposed
method converged in 35 of 36 instances, while Baron, the benchmark
solver that obtained the best results only converged in 4 of 36. Additionally,
even for the one instance the methods did not converge, it achieved relative
gaps below 1 percent in all instances, while Baron achieved relative gaps between
10 percent and 30 percent in most of them.
|
Page generated in 0.102 seconds