• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 32
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Rate Digital Demodulator ASIC

Ghuman, Parminder, Sheikh, Salman, Koubek, Steve, Hoy, Scott, Gray, Andrew 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / The architecture of the High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA’s Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an overview of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.
2

FQPSK ANALOG/DIGITAL IMPLEMENTATIONS FOR LOW TO ULTRA HIGH DATA RATES IN 1Gb/s RANGE SYSTEMS

Chen, Dijin, McCorduck, James A., Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / For simpler implementations of ultra high bit rate systems, combined analog/digital techniques, described here in, provide implementations with the smallest number of component count utilizing minimal “real-estate” and smallest DC power. While digital implementations with tradition Read Only Memory (ROM) and Digital to Analog Converters (DAC’s) have been proven in several commercial, NASA -CCSDS recommended, and U.S. DoD-IRIG standardized Feher’s QPSK (FQPSK) [2,3] products, such implementations can be further simplified, and in particular for ultra high bit rate product applications. Several waveform generating techniques such as linear approximation, analog approximation and mixed analog and linear approximations are investigated using preliminary simulation results.
3

FQPSK DEVELOPMENTS RECOMMENDED FOR CCSDS STANDARDIZATION BY NASA JPL

Martin, Warren L. 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / In 1992, international space agencies became concerned that increasing frequency band congestion, together with attempts by the mobile telephone industry to obtain additional bandwidth, would result in substantially more interference incidents. The CCSDS undertook a technical study to identify and recommend more bandwidth efficient modulation schemes, which would permit more users to co-exist in a frequency band while reducing interference incidents. This paper describes the contribution of the Jet Propulsion Laboratory (JPL) to that effort.
4

ENHANCED PERFORMANCE OF FQPSK-B RECEIVER BASED ON TRELLIS-CODED VITERBI DEMODULATION

Lee, Dennis, Simon, Marvin, Yan, Tsun-Yee 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Commercial FQPSK-B receivers traditionally use symbol-by-symbol detection and have a 2 dB Eb=No loss relative to ideal QPSK at a bit error rate (BER) of 10^(-5). An enhanced FQPSK-B receiver using a Viterbi algorithm (VA) to perform trellis decoding is simulated and shown to have a 1.2 dB Eb=No improvement over symbol-by-symbol detection for 10^(-5)5 BER at the cost of increased complexity. A simplified Viterbi receiver with a reduced trellis and significantly less complexity is introduced with only a slight BER degradation compared to the full Viterbi receiver. In addition, a theoretical bit error probability expression for the symbol-by-symbol FQPSK-B receiver is derived and compared with simulation results.
5

ADVANCED RANGE TELEMETRY (ARTM) TIER I COMPATIBLE DEMODULATOR TESTING AND RESULTS

Temple, Kip 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / The Nova HYPERMOD demodulator operates in three modes, the classic pulse-code modulation/frequency modulation (PCM/FM), sometimes known as continuous phase frequency shift keying (CPFSK) mode, shaped offset quadrature phase shift keying (SOQPSK) mode, and continuous phase modulation (CPM) mode. Of interest to this paper is SOQPSK mode which is a waveform similar to the Advanced Range Telemetry (ARTM) Tier I waveform, Feher’s Quadrature Phase Shift Keying, B version (FQPSK-B) revision (Rev) A1. Also considered is another variant, FQPSK-JR. This paper will outline the cross compatibility and resynchronization speed of these waveforms based upon ARTM-adopted demodulator performance tests. The results of these laboratory tests comparing the HYPERMOD demodulator, the enhanced Tier I demodulator, and the current Tier I reference demodulator, both from RF Networks, will be presented.
6

Digital Radio Implementation for NASA S-Band Space Network Transceiver

Berhanu, Samuel, Neupane, Kamal 10 1900 (has links)
The system diagrams for the digital radio compatible with NASA's S-Band Space Network operating from 2025.8 - 2117.9 MHz (forward link) to 2200 - 2300 MHz (return link) are presented. The digital radio implementation includes binary phase shift keying (BPSK), quadrature phase shift keying (QPSK) and staggered quadrature phase shift keying (SQPSK). We have derived the system requirements for these modulation schemes from the Space Network User Guide (SNUG) and thereafter, derived system diagrams for the communication links. The designed system diagrams for the transceiver were implemented using Simulink models and USRP2 platform.
7

Space-Time Shaped Offset QPSK

Dang, Xiaoyu 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / This paper describes the use of orthogonal space-time block codes to overcome the performance and complexity difficulties associated with the use of Shaped Offset QPSK (SOQPSK) modulation, a ternary continuous phase modulation (CPM), in multiple-input multiple-output telemetry systems. The orthogonal space-time block code is applied to SOQPSK waveforms in the same way it would be applied to symbols. The procedure allows the receiver to orthogonalize the link. The main benefits of this orthogonalization are the easy realization of the transmit diversity for the offset-featured SQOSPK, and the removal of the noise correlation at the input to the space-time decoder and the elimination of I/Q interference when space time orthogonalization is applied to the symbol level.
8

FLEXIBLE ALL-DIGITAL RECEIVER FOR BANDWIDTH EFFICIENT MODULATIONS

Gray, Andrew, Srinivasan, Meera, Simon, Marvin, Yan, Tsun-Yee 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / An all-digital high data rate parallel receiver architecture developed jointly by Goddard Space Flight Center and the Jet Propulsion Laboratory is pre- sented. This receiver utilizes only a small number of high speed components along with a majority of lower speed components operating in a parallel fre- quency domain structure implementable in CMOS, and can process over 600 Mbps with numerous varieties of QPSK modulation, including those incorpo- rating precise pulse shaping for bandwidth eÆcient modulation. Performance results for this receiver for bandwidth eÆcient QPSK modulation schemes such as square-root raised cosine pulse shaped QPSK and Feher’s patented QPSK are presented, demonstrating the great degree of exibility and high performance of the receiver architecture.
9

FQPSK-L: An Improved Constant Envelope Modulation Scheme for QPSK

Lee, Tong-Fu, Wang, Shih-Ho, Liu, Chia-Liang, Bao, Liu 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / A new constant envelope modulation scheme and architecture for QPSK by cubic spline interpolation methods which increase spectral efficiency and power efficiency, named FQPSK-L, is presented. This modulation technique is an extension of the Feher Quadrature Shift Keying (FQPSK) patented technologies, see Ref [1]. Being a constant envelope modulation, FQPSK-L can operate with class C power amplifier without spectrum regrowth. We achieve a more compact spectrum with comparable bit error rate performance. For example, FQPSK-L is about 20% more spectral efficient than GMSK BTb=0.3 from 40 to 70 dB attenuation point. Moreover, FQPSK-L intrinsically has spikes at fc ± 0.5fb, fc ± 1.0fb, fc ± 1.5fb, ... which are useful for carrier recovery, symbol time recovery and fading compensation. In Rayleigh fading channel, FQPSK-L outperform GMSK BTb=0.3 by 0.8 dB. FQPSK-L is an excellent scheme for wireless and satellite communications which require high spectral and power efficiency.
10

FQPSK VERSUS PCM/FM FOR AERONAUTICAL TELEMETRY APPLICATIONS; SPECTRAL OCCUPANCY AND BIT ERROR PROBABILITY COMPARISONS

Law, Eugene, Feher, Kamilo 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The aeronautical telemetry community is investigating alternative modulation methods to the commonly used non-return-to-zero (NRZ) pulse code modulation (PCM)/frequency modulation (FM). This paper outlines the important characteristics being investigated. Measured data comparing the spectral occupancy and bit error probability (BEP) performance of PCM/FM with that of a prototype constant envelope Feher’s quadrature phase shift keying (FQPSK) modulator and demodulator will also be presented. Measured results in several radio frequency bands demonstrate that the 99.99% and -60 dBc bandwidths of filtered FQPSK are only approximately one-half of the corresponding bandwidths of optimized PCM/FM even when the signal is non-linearly amplified. The signal energy per bit to noise power spectral density (E /N ) required for a BEP of 1×10 b 0 -5 for non-optimized FQPSK was approximately 12 dB which is approximately the same as limiter discriminator detected PCM/FM.

Page generated in 0.1379 seconds