• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transformace HTML dat o produktech do Linked Data formátu / Converting HTML product data to Linked Data

Kadleček, Rastislav January 2018 (has links)
In order to make a step towards the idea of the Semantic Web it is necessary to research ways how to retrieve semantic information from documents published on the current Web 2.0. As an answer to growing amount of data published in a form of relational tables, the Odalic system, based on the extended TableMiner+ Semantic Table Interpretation algorithm was introduced to provide a convenient way to semantize tabular data using knowledge base disambiguation process. The goal of this thesis is to propose an extended algorithm for the Odalic system, which would allow the system to gather semantic information for tabular data describing products from e-shops, which have very limited presence in the knowl- edge bases. This should be achieved by using a machine learning technique called classification. This thesis consists of several parts - obtaining and preprocessing of the product data from e-shops, evaluation of several classification algorithms in order to select the best-performing one, description of design and implementation of the extended Odalic algorithm, description of its integration into the Odalic system, evaluation of the improved algorithm using the obtained product data and semantization of the product data using the new Odalic algorithm. In the end, the results are concluded and possible...
2

An Investigation into Knowledge Acquisition and its Emergent Effects on Knowledge Base Quality

Doan, Adam 18 May 2012 (has links)
This project presents an investigation into the viability of alternative knowl- edge acquisition strategies in knowledge management systems. The goal of this project is to illustrate that alternative means of knowledge acquisition can have a significant effect on the quality of the knowledge base. To accomplish this a modification of a wiki system, dubbed Prometheus, is proposed that uses a threshold based user vote acquisition mechanism. A simulation approach is used to compare a model of the Prometheus system against a model of a standard wiki system. A simulation framework is described that facilitates comparison between models of knowledge systems. The simu- lation framework is used to compare the knowledge systems in three different scenarios in an attempt to determine the conditions in which the Prometheus system may produce a higher quality knowledge base. The results of these ex- periments are presented along with some discussion and areas for future work.
3

A Conceptual Model for determining the Value of Business Intelligence Systems

Budree, Adheesh January 2014 (has links)
Philosophiae Doctor - PhD / Business Intelligence refers to the use of Information Systems to enable raw data to be collated into information that can be reported, with the end goal of using this information to enhance the business decision-making process. Business Intelligence is enabled by making use of information that is complete, relevant, accurate, timely and accessible. There are currently a number of documented perspectives that can be used to gauge the value of Business Intelligence systems; however, from an overall business value perspective the most robust method would be to identify and analyse the most commonly identified factors that impact the value assigned to Business Intelligence Systems by a company, and the correlation of each of these factors to calculate the overall value. The importance of deriving a conceptual model, representing the major factors identified from literature and moderated by the quantitative research conducted, lies in its enabling companies and government bodies to assess the true value addition of Business Intelligence systems, and to understand the return on investment of these systems for organisations. In doing so, companies can justify or reject any further expenditure on Business Intelligence. The quantitative research for this thesis was conducted together with a project that was run between the University of the Western Cape and the Hochschule Neu-Ulm University of Applied Sciences in Germany. The research was conducted simultaneously across organisations in South Africa and Germany on the use of BI Systems and Corporate Performance Management. The respondents for the research were Chief Executive Officers, Chief Information Officers and Business Intelligence Managers in selected organisations. A Direct Oblimin-factor analysis was conducted on the online survey responses. The survey was conducted on a sample of approximately 1500 Business Intelligence specialists across South Africa and Germany; and 113 responses were gathered. The factor analysis reduced the key factors identified in the literature to a few major factors, namely: Information Quality, Management and Accessibility, Information Usage, and Knowledge-sharing Culture. Thereafter, a Structural-Equation-Modelling analysis was completed using the Partial-least-Squares method. The results indicate that there is a strong relationship between the factor-Information Quality, Management and Accessibility, and the Value of Business Intelligence. It was found that while there was no strong impact from Information Usage and Culture, there was a strong correlation between Information Usage and Culture and Information Quality, Management and Accessibility The research findings are significant for academic researchers, information technology experts, Business Intelligence specialists and Business Intelligence users. This study contributes to the body of knowledge by bringing together disparate factors that have been identified in academic journals; and assessing the relationship each has on the value of Business Intelligence, as well as the correlations that exist between these factors. From this, the final conceptual model was derived using factors that were identified and tested through the Factor Analysis and the PLS-SEM. The following conclusions can be drawn from the research: (1) The assurance of quality information in the form of complete, accurate, relevant and timeous information that is efficiently managed is the most paramount factor to an organisation deriving value from Business Intelligence systems; (2) information accessibility is key, in order to realise the value of Business Intelligence systems in organisations; and (3) Business Intelligence systems cannot add value to an organisation if a culture of information use and sharing is absent within that organisation. The derived model can be practically implemented as a checklist for organisations to assess Business Intelligence system investments as well as current implementations
4

Révision automatique des connaissances guidant l'exploration informée d'arbres d'états : application au contexte de la généralisation de données géographiques / Automatic revision of knowledge guiding informed search tree exploration : application to the context of geographic data generalisation

Taillandier, Patrick 02 December 2008 (has links)
Cette thèse traite de la révision automatique des connaissances contenues dans les systèmes fonctionnant par exploration informée d'arbres d'états. Ces systèmes, de par leur performance, sont employés dans de nombreux domaines applicatifs. En particulier, des travaux ont proposés d’utiliser cette approche dans le cadre de l'automatisation de la généralisation de données géographiques. La généralisation de données géographique s'intéresse à la dérivation, à partir de données géographiques détaillées, de données moins détaillées adaptées à un besoin particulier (e.g. changement d'échelle). Son automatisation, enjeu majeur pour les agences cartographiques telles que l'Institut Géographique National (IGN), est particulièrement complexe. Les performances des systèmes basés sur l’exploration informée d'arbres d'états sont directement dépendantes de la qualité de leurs connaissances (heuristiques). Or, la définition et la mise à jour de ces dernières s'avèrent généralement fastidieuses. Dans le cadre de cette thèse, nous proposons une approche de révision hors ligne des connaissances basée sur le traçage du système et sur l'analyse de ces traces. Ces traces sont ainsi utilisées par un module de révision qui est chargé d'explorer l'espace des connaissances possibles et d'en modifier en conséquence les connaissances du système. Des outils de diagnostic en ligne de la qualité des connaissances permettent de déterminer quand déclencher le processus de révision hors ligne des connaissances. Pour chaque méthode et approche que nous présentons, une mise en oeuvre est détaillée et expérimentée dans le cadre de l'automatisation de la généralisation de données géographiques / This work deals with automatic knowledge revision in systems based on an informed tree search strategy. Because of their efficiency, these systems are used in numerous fields. In particular, some literature work uses this approach for the automation of geographic data generalisation. Geographic data generalisation is the process that derives data adapted to specific needs (e.g. map scale) from too detailed geographic data. Its automation, which is a major issue for national mapping agencies like Institut Géographique National (IGN), is particularly complex. The performances of systems based on informed tree search are directly dependant on their knowledge (heuristics) quality. Unfortunately, most of the time, knowledge definition and update are fastidious. In this work, we propose an offline knowledge revision approach based on the system logging and on the analysis of these logs. Thus, the logs are used by a revision module which is in charge of the system knowledge revision by knowledge space exploration. Tools for online knowledge quality diagnosis allow to determine when the offline knowledge process should be activated. For each method and each approach presented, an implementation is proposed in the context of geographic data generalisation
5

A Qualitative Study of Selected Quality Knowledge and Practices in Guangdong Province, China

Thomas, Tyler R. 17 March 2007 (has links) (PDF)
The manufacturing industry has become very competitive in today's global market environment. Many US companies are faced with the choice of keeping their manufacturing domestic or looking to low cost off-shore countries to take advantage of the labor costs differences. To gain an understanding of the state of manufacturing in China, a major focus in the manufacturing world today, this thesis was undertaken. This thesis presents the findings of research conducted in Guangdong Province, China in June - July, 2005. This research addressed customer focus, leadership and general manufacturing and quality knowledge and practices of small, medium and large sized companies in Guangdong Province, China. Customer focus and leadership are two of the eight fundamental principles of the ISO 9000:2000 family of standards. These two principles, customer focus and leadership, were selected for the foundational role they play in any organization. Companies that are customer focused and have good leadership principles and practices should tend to give quality a priority for the product/service they provide to their customers. The aim of this thesis was to determine if there is a significant difference in the way small, medium and large companies are aligned with these two fundamental principles. Data regarding customer focus, leadership, and general manufacturing and quality knowledge and practices was collected from 41 manufacturing companies in Guangdong Province, China through the use of a survey, interviews and observation. At the conclusion of this thesis, a summary of the findings regarding the aim of the thesis is presented along with a confirmation and questioning of previous research completed.
6

Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge Base

Gängler, Thomas 20 May 2011 (has links)
Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on users’ needs regarding music collection management which can strongly alternate between single human beings. The author’s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, • a new vocabulary for describing the play back domain, • another one for representing information service categorisations and quality ratings, and • one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.:1 Introduction and Background 11 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Personal Music Collection Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Music Information Management 17 2.1 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.1 Knowledge Representation Models . . . . . . . . . . . . . . . . . 18 2.1.1.2 Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Knowledge Management Systems . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.1 Information Services . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2.2 Ontology-based Distributed Knowledge Management Systems . . 20 2.1.2.3 Knowledge Management System Design Guideline . . . . . . . . 21 2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 The Evolution of the World Wide Web . . . . . . . . . . . . . . . . . . . . . 22 Personal Music Knowledge Base Contents 2.2.1.1 The Hypertext Web . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1.2 The Normative Principles of Web Architecture . . . . . . . . . . . 23 2.2.1.3 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Common Semantic Web Knowledge Representation Languages . . . . . . 25 2.2.3 Resource Description Levels and their Relations . . . . . . . . . . . . . . . 26 2.2.4 Semantic Web Knowledge Representation Models . . . . . . . . . . . . . . 29 2.2.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.4.3 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4.4 Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4.5 Providing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.4.6 Consuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Music Content and Context Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Categories of Musical Characteristics . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Music Metadata Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.3.3 Music Metadata Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.3.1 Audio Signal Carrier Indexing Services . . . . . . . . . . . . . . . . 41 2.3.3.2 Music Recommendation and Discovery Services . . . . . . . . . . 42 2.3.3.3 Music Content and Context Analysis Services . . . . . . . . . . . 43 2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Personalisation and Environmental Context . . . . . . . . . . . . . . . . . . . . . . 44 2.4.1 User Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.4.2 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.3 Stereotype Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 The Personal Music Knowledge Base 48 3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.1 User Account Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.2 Individual Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Information Service Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Proactive Update Notification . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.5 Information Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.6 Personal Associations and Context . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 A Personal Music Knowledge Base 57 4.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 The Info Service Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.2 The Play Back Ontology and related Ontologies . . . . . . . . . . . . . . . . 61 4.1.2.1 The Ordered List Ontology . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2.2 The Counter Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.2.3 The Association Ontology . . . . . . . . . . . . . . . . . . . . . . . 64 4.1.2.4 The Play Back Ontology . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.3 The Recommendation Ontology . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.4 The Cognitive Characteristics Ontology and related Vocabularies . . . . . . 72 4.1.4.1 The Weighting Ontology . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.4.2 The Cognitive Characteristics Ontology . . . . . . . . . . . . . . . 73 4.1.4.3 The Property Reification Vocabulary . . . . . . . . . . . . . . . . . 78 4.1.5 The Media Types Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Knowledge Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Personal Music Knowledge Base in Practice 87 5.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.1 AudioScrobbler RDF Service . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.2 PMKB ID3 Tag Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 Reutilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.3 Reviews and Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Conclusion and Future Work 93 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Page generated in 0.0685 seconds