Spelling suggestions: "subject:"quantendynamik"" "subject:"quantenausbeuten""
1 |
Frequency dependent electronic transport in quantum wiresFechner, Andrea. January 2000 (has links) (PDF)
Hamburg, University, Diss., 2000.
|
2 |
Elektronische Raman-Spektroskopie an ein- und doppellagigen QuantendrähtenDethlefsen, Annelene. January 2004 (has links) (PDF)
Hamburg, Universiẗat, Diss., 2004.
|
3 |
Transportuntersuchungen an vertikal- und lateral-gekoppelten niederdimensionalen Elektronensystemen / Transport Investigations on Vertically and Laterally Coupled Low Dimensional Electron-SystemsLang, Stefan January 2009 (has links) (PDF)
An Y-Schaltern konnte eine nichtlineare Verschiebung der Schwellspannung beobachtet werden. In einem Y-Schalter spaltet sich ein Stammwellenleiter über einen Verzweigungspunkt Y-förmig in zwei Astwellenleiter auf, so dass prinzipiell mehrere Maxima im Leitungsband existieren. Daher wurde ein Modell entwickelt, das die Dynamik der Leitungsbandmaxima im elektrischen Feld beschreibt. Dieses beinhaltet sowohl die geometrischen Kapazitäten als auch die Quantenkapazitäten des Y-Schalters. Zudem konnte gezeigt werden, dass lokalisierte Ladungen zur Beschreibung des Schaltens notwendig sind. Die Verschiebung der Schwellspannungen kann hierbei sehr gut durch das Zusammenspiel der klassischen und der Quantenkapazitäten beschrieben werden, wobei sich herausstellt, dass die Quantenkapazitäten des Systems einen dominierenden Einfluss auf das Schaltverhalten nehmen. Für X-förmige Verzweigungen wird gezeigt, dass für ausgewählte Spannungsbereiche an den vier lateralen Kontrollgates der Transport durch den X-Schalter entweder geblockt oder erlaubt ist. Dies wurde auf die Ausbildung eines Quantenpunkts im Zentrum des X-Schalters zurückgeführt. Es liegt also Coulomb-Blockade vor und der Elektronentransport durch die Struktur kann mittels eines Stabilitätsdiagramms analysiert werden. Es zeigt sich, dass die zentrale Elektroneninsel einen Durchmesser von etwa 20nm hat und eine Ladeenergie von E_C=15meV besitzt. Weiterhin konnten Transportbereiche aufgezeigt werden, welche einen negativen differentiellen Leitwert basierend auf einer dynamischen Kapazität aufweisen. Außerdem konnte in größeren Verzweigungen bistabiles Schalten aufgrund von Selbstschalten nachgewiesen werden. Es ist hierbei sowohl invertierendes als auch nicht-invertierendes Schalten zu beobachten. Es wurden Quantendrahttransistoren auf der Basis von wenigen Nanometer übereinander liegenden, vertikal gekoppelten Elektronengasen realisiert. Die Herstellung der Strukturen stellt hierbei besondere Herausforderungen an die Prozessierungstechniken. So mussten Barrieren unterschiedlicher Al-Konzentrationen während des Wachstums mittels Molekularstrahlepitaxie eingebracht werden, um einen Al-selektiven Ätzprozess anwenden zu können. Die beiden Elektronengase sind nach dem Wachstum lediglich durch eine 7nm dicke AlGaAs-Barriere voneinander getrennt. Um die beiden Elektronengase getrennt voneinander zu kontaktieren war es anschließend notwendig, ein spezielles Ätzverfahren anzuwenden. Es zeigte sich, dass eines der 2DEGs aufgrund des extrem geringen Abstands als hocheffektives Gate für das andere 2DEG dienen kann, wobei für die untersuchten Strukturen eine Gateeffektivität nahe eins, das heißt ein ideales Schalten, beschrieben wird. In Strukturen geringerer Dotierkonzentration wird anschließend hocheffektives Schalten bis zu einer Temperatur von 250K demonstriert. Basierend auf derartigen vertikal gekoppelten Elektronengasen wurden außerdem trocken geätzte Y-Transistoren hergestellt. Es kann bistabiles Schalten nachgewiesen werden, wobei analog zu den X-Strukturen ein Ast als Gate dient. Die Hysterese des bistabilen Schaltens kann dabei so klein eingestellt werden, dass rauschaktiviertes Schalten zwischen den beiden Ausgangszuständen des Systems zu beobachten ist. Es zeigt sich, dass das Schalten in solchen Strukturen mit einer Aktivierungsenergie von lediglich 0.4 kT erfolgt. Somit ist dieser Wert kleiner als das thermische Limit für stabiles Schalten in klassischen Bauelementen. Der 2-Terminal-Leitwert eines Quantendrahts bei Magnetfeldumkehr zeigt Asymmetrien, welche stark sowohl von den Spannungen an den Gates abhängen. Der Strom durch den Quantendraht kann einerseits mittels eines lateralen Gates und außerdem durch ein auf der Oberfläche liegendes vertikales Metallgate gesteuert werden. Hierbei wurde der Kanal einerseits durch Verarmung des 2DEGs über ein Metallgate definiert. Andererseits wurde auf der gegenüberliegenden Seite eine Potentialbarriere durch den Ätzgraben aufgebaut. Es stellte sich heraus, dass die gemessenen Asymmetrien auf den Wechsel zwischen elastischer Streuung der Kanalelektronen an der elektrostatischen Begrenzung und inelastischer Streuung an der geätzten Grenzfläche zurückzuführen sind. Für hohe Vorwärtsspannungen zeigt sich, dass der asymmetrische Anteil der dominierende Term im Leitwert ist. Dies erlaubt es, die vorliegende Struktur als Magnetfeldsensor, mit einer Sensitivität von 3.4mVT zu verwenden. Als Ausblick für die Zukunft kann festgestellt werden, dass komplex geformte Leiterbahnen durch die Ausnutzung von Effekten wie Coulomb-Blockade und Selbstschalten ein großes Potential für zukünftige Schaltkreise besitzen. Da Schaltenergien durch das Ausnutzen von Systemrauschen kleiner als das thermische Limit auftreten soll es ein Ziel für die Zukunft sein, Neuron ähnliche Schaltkreise auf der Basis von verzweigten Schaltern zu realisieren. / This thesis reports on transport investigations performed with semiconductor nanostructures carrying low-dimensional, highly mobile electron gases. These structures are based on modulation doped GaAs/AlGaAs layers. Lithographic techniques were subsequently applied to define narrow channels with different geometries. In this way, laterally as well as vertically coupled conductors like Y- and X-structures were realized. Non-linear threshold voltage shifts in an electron Y-branch switch We have studied the threshold characteristics and gate efficiencies of electron Y-branch switches controlled by in-plane gates. The threshold voltage was found to shift in a nonlinear manner for a certain regime of inplane electric fields controlled by the voltage difference between the gates along the junction. This result is interpreted in terms of local conduction band maxima in the stem and the branches. To explain the non-linear threshold we propose a model based on coupled quantum capacitances and geometrical capacitances including charges localized in the Y-branch. Also the switching efficiencies, which are measures of how much of a change in the electrochemical potential of the gate is transferred into a change of the conduction band maximum, in the switch depend on the gate voltages. The switching efficiency is larger for those parts of the Y-branch with the smallest quantum capacitance. Network-calculations enabled us to determine the relevant system-parameters. Coulomb-blockade and bistability in X-structures We demonstrated charge transport to be blocked for certain voltage regimes applied to four laterally coupled sidegates of an X-structure. This is related to the formation of an electron island, a quantum dot, in the branching section of the device. Therefore, diamond patterns associated with Coulomb- blockade were observed in transport spectroscopy and the electron transport across the structure was analyzed by means of a stability diagram. It was found that the central electron island has a diameter of about 20nm with a charging energy of E_C=15meV. Furthermore we identified transport regimes showing a negative differential conductance. This was interpreted in terms of a dynamic capacitance between the island and the respective drain contact. Moreover bistable switching was demonstrated as a result of self-gating. Inverting as well as non-inverting switching in the self-gating regime is also realized. Coupled two dimensional electron gases Double GaAs quantum wells embedded between modulation-doped AlGaAs barriers with different Al contents were grown by molecular beam epitaxy. Independent electric contacts to each well were realized by applying different etching techniques. Particularly, the lower quantum well was electrically pinched off by an undercut of the lower AlGaAs barrier exploiting an Al-selective etching process. In contrast, the upper quantum well was locally depleted by top etched trenches. Transistor operation of quantum wires defined in such bilayers is demonstrated at room temperature with one GaAs layer used as conducting channel controlled by the other nearby layer as efficient quantum gate. Furthermore, in devices exploiting a low doping concentration, highly effective gating with gate leverage factors near unity is realized up to T=250K. Finally, bistable switching operation is observed for structures exploiting a floating gate. Provided this floating gate becomes charged, it is demonstrated that the threshold voltage of the waveguide increases drastically. Magnetic-field induced asymmetries in quantum wires with asymmetric gate coupling The two-terminal conductance of GaAs/AlGaAs quantum wires was studied in the non-linear regime. The quantum wires were coupled asymmetrically to a metal gate and investigated for a magnetic field perpendicular to the sample surface. A sidegate was defined by wet chemical etching of a deep trench. Adjacent to this trench a narrow metal top gate was deposited on the sample's surface. Therefore, the channel was on the one hand defined by local depletion of the 2DEG by means of a negative topgate voltage. On the other hand, the etched trench leads to a potential barrier serving also as sidewall. It was found that the conductance of the quantum wire shows pronounced asymmetries when the magnetic field is reversed. These asymmetries are related to different scattering mechanisms, i.e. specular scattering of the channel electrons at the sidewall caused by an electrostatic confinement and backscattering at the boundary due to the etched trench. The asymmetric conductance was identified to increase significantly with the bias voltage. This probably allows the application of such structures as magnetic field sensors with a sensitivity of 3.4mV/T
|
4 |
Wachstum und Charakterisierung von Halbleiternanostrukturen auf vorstrukturiertem SubstratSchwarz, Axel. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2001--Aachen.
|
5 |
Nichtlinearer Magnetotransport und memristive Funktionen von nanoelektronischen Bauteilen / Nonlinear magneto transport and memristive functions of nanoelectronic devicesBrandenstein-Köth, Bettina January 2010 (has links) (PDF)
Gegenstand dieser Arbeit sind Transportuntersuchungen an nanoelektronischen Bauelementen, wobei der Schwerpunkt in der Analyse von nichtlinearen Transporteigenschaften hybrider Strukturen stand. Zum Einsatz kamen auf GaAs basierende Heterostrukturen mit zum Beispiel kleinen Metallkontakten, die zu Symmetriebrechungen führen. Die Untersuchungen wurden bei tiefen Temperaturen bis hin zu Raumtemperatur durchgeführt. Es kamen zudem magnetische Felder zum Einsatz. So wurden zum einen der asymmetrische Magnetotransport in Nanostrukturen mit asymmetrischer Gateanordnung unter besonderer Berücksichtigung der Phononstreuung analysiert, zum anderen konnte ein memristiver Effekt in InAs basierenden Strukturen studiert werden. Des Weiteren konnte ein beachtlicher Magnetowiderstand in miniaturisierten CrAu-GaAs Bauelementen beobachtet werden, der das Potential besitzt, als Basis für extrem miniaturisierte Sensoren für den Betrieb bei Raumtemperatur eingesetzt zu werden. / In the frame of this thesis transport investigations of nanoelectronic devices were performed with an emphasis on the analysis of nonlinear transport characteristics of hybrid structures with distinct asymmetries. In particular, devices based on GaAs/AlGaAs heterostructures combined with small metal contacts were investigated and pronounced nonlinear transport was found. The transport investigations were conducted at temperatures from 4:2K up to room temperature. Additionally, external magnetic fields were applied, too. An asymmetric magneto transport in nanostructures with asymmetric gate layouts and the role of phonon scattering was analyzed. Also a memristive effect was studied in InAs structures. Furthermore, a considerable magneto resistance in miniaturized structures was observed which has the potential to exploit similar devices as miniaturized sensors for application at room temperature.
|
6 |
Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen TransportHartmann, David January 2008 (has links)
Würzburg, Univ., Diss., 2008. / Zsfassung in engl. Sprache.
|
7 |
Hochortsaufgelöste optische Spektroskopie an niedrigdimensionalen HalbleiterstrukturenSchuster, Robert. January 2005 (has links) (PDF)
Regensburg, Univ., Diss., 2005.
|
8 |
Rashba-Effekt in niedrigdimensionalen InGaAs/InP-StrukturenKnobbe, Jens. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
|
9 |
Electronic and optical properties of quantum dots and wiresStier, Oliver. January 1900 (has links) (PDF)
Techn. University, Diss., 2000--Berlin.
|
10 |
Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport / Electric and magnetic switching in nonlinear mesoscopic transportHartmann, David January 2008 (has links) (PDF)
Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. / This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport.
|
Page generated in 0.0672 seconds