1 |
Création et caractérisation d’une source ajustable de paires d’atomes corrélés / Creation and characterization of a tunable source of correlated atoms pairsRuaudel, Josselin 11 December 2013 (has links)
Ce mémoire de thèse décrit la création expérimentale et la caractérisation d'une source de paires d'atomes corrélés. Cette source ajustable repose sur l'utilisation du mélange à quatre ondes dans un réseau optique. Les paires ainsi créées sont similaires aux paires de photons produites par conversion paramétrique et ouvrent la porte à la réalisation d'expériences élaborées d'optique atomique quantique. En plaçant un condensat de Bose-Einstein dans un réseau en mouvement, les conditions d'accord de phase sont vérifiées et des atomes jumeaux sont alors produits spontanément. Grâce à un détecteur d'atomes uniques résolu à trois dimensions nous avons pu caractériser la source de paires obtenue. Nous avons ainsi étudié en profondeur les conditions d'accord de phase, prouvant que les atomes sont diffusés de manière préférentielle dans deux fines classes de vitesses qui conservent l'impulsion et l'énergie. En modifiant la vitesse et la durée du réseau par rapport aux atomes, il est possible de choisir les modes de sorties et leurs populations ce qui rend ce processus ajustable. De plus, nous avons pu mettre en évidence l'importance des interactions et en particulier des effets de champ moyen qui viennent modifier la conservation de l'énergie. La détection d'atome unique permet également d'étudier les propriétés statistiques des atomes jumeaux, nous avons ainsi pu mettre en évidence de fortes corrélations entres les atomes issus d'une même paire. Nous avons également observé une réduction sous le bruit de grenaille du bruit sur la différence du nombre d'atomes dans les modes corrélés. Cette réduction est une indication forte du caractère non classique des paires produites / This thesis describes the experimental realization and characterization of a source of pairs of correlated atoms. This tunable source is based upon four waves mixing in an optical lattice. The created atomic pairs are similar to photon pairs made by parametric down conversion and open the way toward more elaborate quantum atom optic experiments. By placing a Bose-Einstein condensate in a moving optical lattice the phase matching conditions are fulfilled and twins atoms are spontaneously produced. Thanks to a single atom detector with three-dimensional resolution, we were able to characterize our source of pairs. By studying the phase matching conditions, we proved that the atoms are preferentially produced in two narrow velocity classes conserving both momentum and energy. By modifying the duration and the velocity of the lattice with respect to the atoms, one can tune the output modes and their populations providing a fully tunable process. Moreover, we have demonstrated the important effect of interactions -especially of mean field effects- that modifies the energy conservation. The single atom detection provided also a convenient way to look at statistical properties of the twins atoms: we have demonstrated strong correlation between atoms from the same pair and also we have observed a reduction below the shot noise of the noise on the number of atoms in correlated modes. Such a reduction is a strong indication of the non-classical nature of the produced atomic pairs.
|
2 |
Mélange à quatre ondes atomique dans un réseau optique / Atomic four-wave mixing in an optical latticeBonneau, Marie 16 December 2011 (has links)
Ce mémoire de thèse décrit une expérience de création de paires d’atomes jumeaux par mélange à quatre ondes en présence d’un réseau optique. Ces atomes jumeaux sont analogues aux photons jumeaux obtenus par conversion paramétrique, lesquels ont été employés dans plusieurs expériences fondamentales d’optique quantique, ainsi que pour des applications en interférométrie et en information quantique. En raison de la relation de dispersion, l’accord de phase peut être obtenu quand les atomes se déplacent dans le réseau optique. Le mélange à quatre ondes qui se produit alors spontanément constitue un cas particulier d’instabilité dynamique. Nous avons réalisé cette expérience à partir d’un gaz dégénéré d’hélium métastable, obtenu dans un piège optique très allongé. On a superposé aux atomes un réseau optique en mouvement, qui est également décrit dans ce mémoire. Au moyen d’un détecteur d’atomes uniques résolu à trois dimensions, nous avons caractérisé le mélange à quatre ondes obtenu. Nous avons étudié les conditions d’accord de phase de ce processus, et les différents modes peuplés, montrant que la méthode que nous employons permet de diffuser préférentiellement les atomes dans deux fines classes de vitesse, que l’on peut ajuster et dont on contrôle les populations. Cette flexibilité facilitera l’utilisation des paires d’atomes pour des expériences futures. Au niveau de chacune de ces deux classes de vitesses, nous avons mesuré une corrélation de type Hanbury Brown et Twiss. Par ailleurs, nous avons démontré une réduction des fluctuations de la différence de population entre les deux classes sous le bruit de grenaille. La coexistence de ces deux effets témoigne du caractère non-classique des paires générées, qui pourront être exploitées pour des expériences d’optique atomique quantique, comme par exemple pour observer l’effet Hong-Ou-Mandel sur des atomes. / In this thesis, an experiment of correlated atom pairs production through four-wave mixing in an optical lattice is described. The twin atoms are analogous to the twin photons produced by parametric down conversion, used in many fondamental quantum optics experiments, and applied in interferometry and quantum information. Because of the dispersion relation, phase matching can be obtained when atoms move in a periodic potential. Four-wave mixing then spontaneously occurs and is a special case of dynamical instability. We performed the experiment with a degenerate metastable helium gas, obtained in a very elongated optical trap. A moving optical lattice, whose characterisation can also be found in the manuscript, was applied on the atoms. The resulting four-wave mixing was studied using a 3D-resolved single atom detector. The phase-matching conditions of this process and the populated modes were investigated. We showed that with our method atoms are preferentially scattered into two narrow classes with tunable velocities and populations. This versatility should be an advantage when using the pairs in future experiments. For each of these velocity classes, we mesured a Hanbury Brown and Twiss local correlation. Furthermore, we demonstrated relative number squeezing between both classes. These two simultaneous effects indicate the non-classicality of the generated pairs, which can be used in quantum atom optics experiments, for example to observe the Hong-Ou-Mandel effect with atoms.
|
3 |
An atomic Hong-Ou-Mandel experiment / Réalisation expérimentale de l'effet Hong-Ou-Mandel atomiqueLopes, Raphael 29 April 2015 (has links)
Cette thèse décrit l'observation expérimentale de l'effet Hong-Ou-Mandel avec une sourceatomique ultra-froide. L’expérience originale réalisée en 1987 par C. K. Hong, Z. Y. Ou et L. Mandel illustre de façon simple une interférence à deux particules explicable uniquement par la mécanique quantique : deux particules bosoniques et indiscernables, arrivant chacune sur une face d'entrée différente d'une lame semi-réfléchissante ressortent ensemble. Cet effet se traduit par une réduction du taux de détection en coïncidence entre les deux voies de sortie quand les particules arrivent simultanément sur la lame. Cette expérience fut originalement réalisée avec des photons et nous rapportons ici la première mise en oeuvre expérimentale avec des particules massives se propageant dans l’espace libre.Après présentation des différentes techniques nécessaires à sa réalisation, nous décrivons cette expérience et analysons les résultats obtenus. En particulier, la réduction du taux de coïncidence est suffisamment forte pour exclure toute interprétation classique ; l'observation de cet effet constitue une brique fondamentale dans le domaine de l’information quantique atomique. / In this thesis, we report the first realisation of the Hong–Ou–Mandel experiment with massive particles in momentum space. This milestone experiment was originally performed in quantum optics: two photons arriving simultaneously at the input ports of a 50:50 beam-splitter always emerge together in one of the output ports. The effect leads to a reduction of coincidence counts which translates into a dip when particles are indistinguishable. We performed the experiment with metastable helium atoms where the specificities of the Micro-Channel-Plate detector allows one to recover the momentum vector of each individual atom.After listing the necessary tools to perform this experiment with atoms, the experimental sequence is discussed and the results are presented. In particular we measured a coincidence count reduction that cannot be explained through any simple classical model. This corresponds to the signature of a two-particle interference, and confirms that our atomic pair source produces beams which have highly correlated populations and are well mode matched. This opens the prospect of testing Bell’s inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics. It also demonstrates a new way to produce and benchmark twin-atom pairs that may be of interest for quantum information processing.
|
4 |
Fermions and Bosons on an Atom ChipExtavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence.
This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate,
and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic
cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb
collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF ,
and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create
dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
|
5 |
Fermions and Bosons on an Atom ChipExtavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence.
This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate,
and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic
cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb
collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF ,
and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create
dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
|
Page generated in 0.0708 seconds